
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

DYNAMIC PARAMETERIZATION OF IPSEC

by

Christopher D. Agar

December 2001

 Thesis Advisor: Cynthia E. Irvine
 Second Reader: Timothy E. Levin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Dynamic Parameterization of IPsec
6. AUTHOR(S) Christopher D. Agar

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

The Internet has become the medium of choice for communications between most Government and
Military organizations. Unfortunately the key Internet protocols were not designed to provide security and their
security vulnerabilities have become apparent. IPsec was developed to provide users with a range of security
services, for both confidentiality and integrity, enabling them to securely pass information across networks.
Automated security mechanisms are typically designed and/or calibrated to meet an organization’s security policy.
However, once the mechanism is in operation the implemented policy is in a static state, and cannot be adjusted
according to dynamic environmental conditions. This means that security mechanisms fail to reflect the policy that
is appropriate for the changing contexts. Dynamic parameterization enables security mechanisms to adjust the
level of security service “on-the-fly” to respond to changing conditions (i.e. INFOCON, THREATCON). This
work includes the extension of the attributes encoded by the KeyNote Trust Management System and modification
of the IPsec mechanism to incorporate dynamic parameters into the security service selection mechanism, and the
construction of a graphical user interface, for demonstrating “proof-of-concept” of Dynamic Parameterization of
OpenBSD 2.8 IPsec.

15. NUMBER OF
PAGES

334

14. SUBJECT TERMS KeyNote, ISAKMP, IKE, IPsec, Graphical User Interface, Security
Assoication (SA), Security Policy Database (SPD), Security Association Datbase (SAD), Security
Proposal

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Internet has become the medium of choice for communications between most

Government and Military organizations. Unfortunately the key Internet protocols were

not designed to provide security and their security vulnerabilities have become apparent.

IPsec was developed to provide users with a range of security services, for both

confidentiality and integrity, enabling them to securely pass information across networks.

Automated security mechanisms are typically designed and/or calibrated to meet an

organization’s security policy. However, once the mechanism is in operation the

implemented policy is in a static state, and cannot be adjusted according to dynamic

environmental conditions. This means that security mechanisms fail to reflect the policy

that is appropriate for the changing contexts. Dynamic parameterization enables security

mechanisms to adjust the level of security service “on-the-fly” to respond to changing

conditions (i.e. INFOCON, THREATCON). This work includes the extension of the

attributes encoded by the KeyNote Trust Management System and modification of the

IPsec mechanism to incorporate dynamic parameters into the security service selection

mechanism, and the construction of a graphical user interface, for demonstrating “proof-

of-concept” of Dynamic Parameterization of OpenBSD 2.8 IPsec.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1
B. BACKGROUND ..1
C. EXPECTED BENFITS OF THE RESEARCH ..2
D. RESEARCH OBJECTIVES ...3
E. THE ROAD TO DYNAMIC PARAMETERIZATION...............................3

II. QUALITY OF SECURITY SERVICE (QOSS)..5
A. INTRODUCTION..5
B. QUALITY OF SECURITY SERVICE (QOS) ..5
C. QUALITY OF SECURITY OF SERVICE (QOSS)7

1. Managing Quality of Security Service (QoSS)9
D. CONCLUSION ..13

III. SYSTEM ARCHITECTURE ...15
A. INTRODUCTION..15
B. OVERVIEW OF IPSEC..15
C. IPSEC ARCHITECTURE..18

1. Security Services Provided by IPsec ..18
D. ANALYSIS ...65

1. IPsec (Re)Initialization..65
2. IPsec Output Processing ..65
3. IPsec Input Processing ...67

E. CONCLUSION ..69

IV. DESIGN AND PROCESS ...71
A. INTRODUCTION..71
B. PROVIDING GRANULARITY TO KEYNOTE.......................................72

1. Goal 72
2. Process Review...72
3. Modification Phases ...78

C. PARAMETERIZING AND IMPROVING ISAKMPD.CONF –
KEYNOTE PROPOSAL LOADING PROCESS79
1. Goal 79
2. Process Review...79
3. Modifications Phases ...82
4. Testing 83

D. CONCLUSION ..83

V. IMPLEMENTATION ...85
A. INTRODUCTION..85
B. PROVIDING GRANULARITY TO KEYNOTE.......................................85

1. Parameterization of KeyNote..85

 viii

C. REPLACING ISAKMPD.CONF WITH KEYNOTE93
1. Current isakmpd.conf ..93
2. Process of Replacing isakmpd.conf with KeyNote..........................93

D. CONCLUSION ..129

VI. GRAPHICAL USER INTERFACE (GUI) DEMOSTRATION131
A. INTRODUCTION..131
B. COMMAND-LINE ENVIRONMENT ..131

1. IPsec System Flush...131
2. Setting Up and Mounting the Security Policy Database131
3. IPsec Execution ..133
4. IPsec Connection Termination ...134
5. Display SPD 134
6. Display SAD 135
7. tcpdump 136

C. GRAPHICAL USER INTERFACE (GUI) DEMONSTRATION136
1. Goal 136
2. Mechanism of Demonstration...136
3. Graphical Demonstration Components ...139

D. CONCLUSION ..175

VII. RESEARCH SUMMARY AND FUTURE WORK..177
A. INTRODUCTION..177
B. SUMMARY OF RESEARCH PERFORMED IN THIS THESIS177

1. Research Conclusions ..179
C. FUTURE DESIGN AND IMPLEMENTATION ON

PARAMETERIZATION ..180
1. Ability to Handle all Possible Security Parameter

Combinations ..180
2. Improving Dynamic Parameter Loading by Utilizing “Policy-

Callback” Embedded Functionality180
3. Eliminate the Need for isakmpd.conf Entirely..............................181
4. Develop a Parsing Mechanism to Retrieve the Initial Security

Policy Database Entries ...181
D. HARNESSING OPENBSD’S IPSEC MECHANISM CAPABILITIES 181

1. Behavior with all Possible Combinations of QoSS and non-
QoSS Peers ..181

2. Per-User / Per-Application Relationship Capability182
3. Explore Proposal Caching Issues ...182
4. Security Policy Editor..182
5. Additional Network Configurations ...182
6. IPV6 Addresses ..183
7. Distribution of KeyNote Policies...183
8. KeyNote Protection..183
9. Secure Dissemination & Storage of QoSS Parameters' Values...183
10. IPsec Costing Issues...183
11. Graphical User Interface ...183

 ix

E. CONCLUSION ..184

APPENDIX A. CONF.C...185

APPENDIX B. IKE_QUICK_MODE.C...231

APPENDIX C. DEMO.JAVA..235

APPENDIX D. SPD.JAVA...245

APPENDIX E. DEMO_SUPPORT_FUNCTIONS.JAVA..251

APPENDIX F. SPFK.JAVA...265

APPENDIX G. DP_CONSOLE.JAVA ...269

APPENDIX H. IPSECINFO.JAVA ..281

APPENDIX I. TCPDUMP.JAVA..295

APPENDIX J. ISAKMPD.CONF FILE ...299

APPENDIX K. ISAKMPD.POLICY FILE ..301

APPENDIX L. KEYNOTEDNFFINAL.POLICY FILE...305

APPENDIX M. SECURITY PROPOSAL SUMMARY ...309

LIST OF REFERENCES ..311

INITIAL DISTRIBUTION LIST...315

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 2.1. Quality of Service (QoS)..7
Figure 2.2. Quality of Security Service (QoSS). ..8
Figure 2.3. Mapping Security Attributes to Security Policy. ...12
Figure 2.4. Costing Framework Model. ...13
Figure 3.1. IPsec vs. VPN Security Mechanisms. ..16
Figure 3.2. IPsec Architecture. ...18
Figure 3.3. ESP- Protected IP Packet. ..20
Figure 3.4. Encrypting and Decrypting using CBC and IV. ..21
Figure 3.5. AH-Protected IP Packet. ..22
Figure 3.6. IPsec Configurations. ...24
Figure 3.7. IPsec Transport and Tunnel Modes. ..25
Figure 3.8. Transport Adjacency. ...27
Figure 3.9. Iterated Tunneling. ...27
Figure 3.10. IPsec Security Policy. ..29
Figure 3.11. IPsec Security Policy Database (SPD) Populating Mechanisms.30
Figure 3.12. Security Policy Database (SPD). ...32
Figure 3.13. SAD: Security Association Database...34
Figure 3.14. IPsec Input Module. ...37
Figure 3.15. IPsec Output Module. ..38
Figure 3.16. Controlling Events for IKE. ...41
Figure 3.17. IPsec Security Association Process Defined by ISAKMPD.42
Figure 3.18. IKE Phase I – Main Mode..43
Figure 3.19. IKE Phase I Aggressive Mode. ..44
Figure 3.20. IKE Phase II – Quick Mode. ..46
Figure 3.21. isakmpd.conf Process...58
Figure 3.22. KeyNote Process. ...60
Figure 3.23. IPsec Architecture. ...67
Figure 3.24. IPsec Architecture. ...69
Figure 4.1. Current KeyNote Process...74
Figure 4.2. An Example of a Condition Statement inKeyNote. ...76
Figure 4.3. Modified KeyNote Process. ...77
Figure 4.4. Current (Re)Initialization Process..80
Figure 4.5. Modified (Re)Initialization Process...81
Figure 5.1. Current KeyNote Query Process..89
Figure 5.2. Modified KeyNote Query Process. ..92
Figure 5.3. Logical Flow of Functions for Parsing KeyNote into isakmpd.conf Syntax. 116
Figure 5.4. Logical Flow of Security Proposal Parsing and Loading Process with the

Added Dynamic Parameter Interface. ..122
Figure 5.6. Security Proposal Default Loading Process...126
Figure 5.7. Security Proposal Duplicate Checking Process. ..129

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 3.1. Possible Selector Combination. ...35
Table M.1. Security Proposal Summary..309

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

The author would like to thank and acknowledge the following personnel:

- Dr Cythina Irvine, for her professional guidance and direction, inspiring me to

go beyond my previously known limits and capabilities.

- Tim Levin, for his expert knowledge, guidance and patience.

- Evie Spyropoulou, for her patience, long hours of trouble-shooting, and expert

system knowledge, without which the research would have been seriously hindered.

- Bruce Allen his vast knowledge of Java.

- David Schiffett for his mastery of C.

- Eliane Christian for very soothing patience during a very stressful time.

- Last but certainly not least, my wonderful and beautiful wife, Amy, who

provided me with unlimited support and love during the performance of this research.

Without her support, none of my accomplishments would have been possible.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE

Current implementations of IPsec and KeyNote do not provide the granularity or

flexibility to adjust security controls to reflect real-world threat, information security

levels and priority requirements for data delivery. The purpose of this thesis is to analyze,

design and implement an interface that interacts with a Trust Management System

(KeyNote) to dynamically modify the protection of IPsec communications in response to

changing security threats, conditions and situations.

B. BACKGROUND

Information assurance and security have grown in concern and importance along

with our dependence on network communications and our connectivity across the

Internet. The DOD requires the ability to communicate securely within computer

networks via the Internet. Unfortunately the key Internet protocols were not designed to

provide security. As our dependence on the Internet has grown and its security

vulnerabilities have become apparent.

Typically a “penetrate-and-patch” technique is used to attempt to locate and fix all

system vulnerabilities when security is applied after development and implementation.

The weakness in this approach is that to be 100% successful, you have to find all

vulnerabilities and patch each one. This is very costly in man-hours and not guaranteed to

be 100% effective. It is better to build security into a system from the ground up,

incorporating secure methodology into the design and implementation phase. For

example, formal methods may be used to mathematically determine the system’s

assurance level.

One of the first successful attempts to secure network communication across an

insecure medium (Internet), was the Virtual Private Network (VPN). This involved the

establishment of a static secure connection between two peers, gateways or a

combination of both. The limitation of a simple VPN is tha t it is not capable of applying a

complex security policy in which different applications and different users would require

different levels of security.

2

IPsec was developed to provide further granularity for the Internet Protocol (IP).

IPsec extends the IP Protocol to enable security for TCP/IP communications. IPsec

provides both secrecy and integrity services. A wide variety of choices are available

when establishing protected communications across the network. The appropriate choice

and combination of secrecy and integrity mechanisms will depend upon the “trust

relationships” between the communicating entities. Those relationships are constrained

by the policy of each entity. Negotiation of policy and mechanisms takes place in the

context of the Internet Key Exchange (IKE) framework and the Internet Security

Association and Key Management Protocol (ISAKMP). However, IKE and ISAKMPD

do not provide a general mechanism for managing and incorporating security policy. In

order to ensure that IPSEC consistent ly meets local security policy needs of the user, a

Trust Management System is used to encode policy and support communications security

negotiation and management. (Thayer, R., Doraswamy,N., and Glenn, R , 1998)

A trust management system unifies the elements of security policy, credentials,

access control, and authorization. Applications can use the Keynote trust management

system to verify, through the compliance checker, whether a requested action is

authorized. (Matt Blaze, John Ioannidis, and Angelos D. Keromytis, Feb 2000)

The concept of Quality of Security Service (QoSS) provides the foundation for

implementation of security mechanisms, such as IPsec, that utilize a trust management

system to manage security according to policy. QoSS provides a means to manage

security services based on the requirements set by the user‘s requests, the system’s

security policy, the availability of system resources and the network environment. (Irvine,

C.E. and Levin, T, September 2000)

Currently, IPSEC and Keynote do not have the flexibility to adjust security

controls to adapt to changes in threat conditions, critical time transmissions, and network

congestion/traffic. By providing more granularity through parameterization in IPsec,

these and other dynamic security requirements can be represented and accurately trigger

adjustments in security services.

C. EXPECTED BENFITS OF THE RESEARCH

By providing dynamic parameterization to IPsec, government and military

3

security systems will be able to automate security service adjustments according to

dynamic environmental parameter settings, such as INFOCON and THREATCON.

Currently, when a dynamic environmental value changes, security systems must be

stopped, reconfigured and executed to incorporate policy changes appropriately. With

dynamic parameterization, the security services will adjust “on-the-fly” in accordance

with local security policy. This research will provide a foundation for allowing IPsec

mechanisms to be managed under dynamically changing network conditions. The

additional granularity intended for the IPsec mechanism will allow it to reflect both

Quality of Security Service requirements and highly granular security policies.

D. RESEARCH OBJECTIVES

The objectives of this research are three fold:

- Thoroughly study the current implementation of IPsec, specifically
OpenBSD 2.8, to gain an understanding of the security mechanism and its
components.

- Design and develop a dynamic parameterization module, providing an
interface that will enable users to select values for “dynamic parameters,”
and ultimately result in an IPsec reconfiguration according to established
security policy.

- Design and develop a method of demonstrating the results of this research,
specifically to users with limited knowledge of the OpenBSD operating
environment.

E. THE ROAD TO DYNAMIC PARAMETERIZATION

The following chapters will be provided to describe the work required to achieve

the objectives listed above: background, analysis, design, implementation, testing and

demonstration.

- Chapter II Quality of Security Service(QoSS) – a brief introduction to
QoSS.

- Chapter III IPsec Architecture – a review IPsec and its implementation
in OpenBSD 2.8.

- Chapter IV Design and Process – an outline and description of the design
and process phase of dynamic parameterization.

- Chapter V Implementation – a description of the methodology, and
actual implementation used to achieve the objectives, including pseudo
algorithms and source code.

- Chapter VI Graphical User Interface Demonstration – a description of
the design and implementation of the GUI demonstration module.

4

- Chapter VII Research Summary and Future Work – a summary of the
completed research and a discussion of future related work.

5

II. QUALITY OF SECURITY SERVICE (QOSS)

A. INTRODUCTION

The challenge of providing users with consistent and reliable access to resources

in a distributed networking environment, such as across the Internet, has become a real

and troublesome problem for System Administrators and Resource Managers. The

former linear solution of providing resources by calculating and controlling the number

of users and types of terminals cannot be used outside the local network environment.

The Quality of Service (QoS) mechanism was developed to handle this management

problem. It provides a metric to measure and manage computational resources in an

effort to provide requested levels of service to customers. (Aurrecoechohea, C.,

Campbell, A., and Hauw, L. A., 1996) (Chatterjee, S., Sabata, B., Sydir, J., May 1998)

A similar challenge exists within the realm of network computer security. Here

the objective is to be able to fulfill user security requests and adapt and adjust

accordingly to environment security changes. This chapter discusses Quality of Security

Service (QoSS), the foundation and methodology of Quality of Service, its importance,

and costing mechanisms. The concept of dynamic parameters, Network Mode and

Security Level, is introduced. These parameters allow environmental conditions to be

mapped accordingly to security policy and ultimately determining the security

parameters used by the system. To support security system management, a costing

framework that will allow system administrators to properly orchestrate security

resources is also discussed. (Spyropoulou, E., Levin, T., and Irvine, C.E., December

2000)

B. QUALITY OF SECURITY SERVICE (QOS)

The Quality of Service (QoS) mechanism, see Figure 2.1, provides the ability to

manage network and computational resources in accordance with the user’s service

requests, availability of system resources, and the network environment. QoS in simple

terms, is a mechanism that establishes a contract between users and resource managers.

The service requests are based on the following abstract attributes: performance, accuracy

and precision. A user will typically request a certain level of service and the resource

manager will either approve the request or deny it, possibly offering another available

6

level of service. (Aurrecoechohea, C., Campbell, A., and Hauw, L. A., 1996)(Chatterjee,

S., Sabata, B., Sydir, J., May 1998)

The QoS mechanism may also be required to adjust negotiated levels of service as

the availability of resources increases or decreases. This will require the Quality of

Service (QoS) mechanism to govern all services provided to all users according to overall

system policy requirements. This allows the management system to control resources

and services as a whole in the event of a shift of prioritization or a loss or gain of

resources. Resource usage policies may vary, for example to allocate resources and

services equally or perhaps to provide a prioritized range of security services.

Ultimately, a user’s level of service may be modulated to accommodate the system’s

policy and availability of resources. Of course, system policy level requirements will

dominate individual level requirement of services and resources. (Aurrecoechohea, C.,

Campbell, A., and Hauw, L. A., 1996)(Chatterjee, S., Sabata, B., Sydir, J., May 1998)

A further level of granularity to service level negotiations can be provided by

utilizing hard and soft requirements. Hard requirements must be met in order for the QoS

mechanism to accept the user’s request. Soft requirements permit requests to be satisfied

by a range of acceptable services. The soft variables may be adjusted during service to

accommodate other users or network environmental factors. (Aurrecoechohea, C.,

Campbell, A., and Hauw, L. A., 1996)(Chatterjee, S., Sabata, B., Sydir, J., May 1998)

Providing different ranges and levels of potential service enables a system

manager to effectively orchestrate system resources dependent upon requests, network

environment and available resources.

7

Quality of Service (QoS)

Negotiated communication ChannelUser A User B

Resource Manager

Communications
Negotiation Communications

Negotiation

Figure 2.1. Quality of Service (QoS).

C. QUALITY OF SECURITY OF SERVICE (QOSS)

With the increased interest and implementation of computer security systems,

specifically their effectiveness and impact on operational functionality, mechanisms to

monitor and mediate security controls are required. In the QoS model, resource allocation

is adjusted to meet user requests under changing network environment and resource

availability conditions. Similarly, Quality of Security Service (QoSS), see Figure 2.2

provides a mechanism to manage security services to meet requirements set by the user‘s

requests, system’s security policy, availability of system resources and network

environment. (Irvine, C.E. and Levin, T., September 2000)

Similar to the modulation of resources to support QoS, security services can be

defined in terms of user and system requirements, network environment factors and

available resources. Without a range of security services, a user is faced with the rigid

and limited choice of “all or nothing”: security or no security. Historically, security

services have been provided in such a static manner. (Spryropoulou, Evdoxia, Agar,

Chris, Levin, Timthoy, Irvine, Cynthia, January 2002) Quality of Security Service

(QoSS) provides a more flexible solution to the provision of security services. The

8

security resource manager and/or the security system can adjust security service to meet

user requirements, system security policy and network environment constraints. (Irvine,

C.E. and Levin, T., September 2000)

Security systems and managers can maintain overall control of the security

mechanism through QoSS “system security policies.” These policies dominate the

individual “user security requirements.” Specifically, they define all authorized

operations per user, system, application , etc.

QoSS has several mechanisms to handle security variances. A security variance

exists when security policies may be enforced utilizing a specific range of attributes.

Therefore, based on the policy parameters, the attributes used to enforce the security

policy may differ according to selection criteria. Fixed requirements are used to set

minimum level acceptable security standards. A range of security settings meeting or

exceeding this minimum level can be provided. For example a system may utilize SHA

as a minimum leve l authentication algorithm for all message handling. Further

granularity in support of confidentiality could be applied to messages by users or

applications by selecting an encryption algorithm from a provided range. Other examples

of security attributes that may be used are: assurance level, key length or security

attribute expiration date stamp. (Irvine, C.E. and Levin, T., September 2000)

Quality of Security Service (QoSS)

Negotiated range of secure communication attributesUser A User B

Security Resource Manager

Secure Communication
Negotiation

Secure Communication
Negotiation

Figure 2.2. Quality of Security Service (QoSS).

9

1. Managing Quality of Security Service (QoSS)

Inevitably, security mechanisms result in a cost to the user, system and resources.

Whether in the form bandwidth, algorithm processing time, overhead, or funds, the cost

of security is a challenging concern to resource managers. A costing framework is

required to map security service resource consumption to available resources, ultimately

enabling a management system to efficiently and effectively handle security service

costs.

Security services, as previously described, may utilize high level services and

consume lower level resources in a system. High level services include, for example,

non-repudiation, auditing, authentication, encryption, or intrusion detection. Low level

resources include memory, bandwidth, or processor time. Further, each security service

will require a governing policy, consisting of specific rules that determine how and when

to use the service. Therefore each network task associated with QoSS can be mapped to a

vector of security requirements directly associated with the security services the task

requires. (NPS-CS-02-001, January 2002)

1.1 Dynamic Parameters

Government and DOD organizations utilize a variety of dynamic parameters to

define a predefined response of specific actions according to policy. Examples include

INFOCON and THREATCON levels. In order for a security mechanism to be fully

functional within the DOD and Government infrastructure, it has to be able to incorporate

the dynamic parameters into the security setting decision making process. A change in

an INFOCON or THREATCON level should have an immediate effect on attributes and

settings in a security mechanism. By introducing a dynamic mechanism, a system can

modulate its security settings in response to these dynamic parameters. Security level and

network mode, defined in the next section, have been chosen as two abstract dynamic

parameters that govern changes to security attributes as defined in the an organization’s

security policy. (NPS-CS-02-001, January 2002)

By developing and implementing a security mechanism that can dynamically

adjust in accordance with a change to network modes and/or security levels, the users and

10

managers do not have to be concerned with the fine granularity and low-level complexity

involved in adjusting and selecting appropriate security attributes.

1.1.1 User Choices for Security Levels

Security levels are a common metric used in the government and DOD to

distinguish authorization for classified information. Common levels include Top Secret,

Secret, Classified and Unclassified. Each of this levels correspond to different governing

policies and requirements associated with the threat to national security by the disclosure

of information to adversaries. Likewise, security levels, as defined here for proof of

concept, represent an inc reasing requirement for stronger security (e.g. encryption and

authentication algorithms).

Network security policies will require a range of maximum and minimum

security levels. Minimum security levels set the lowest acceptable security attributes and

maximum security levels establish a ceiling on the use of available security resources.

Intersections of policies require further granularity in security settings to satisfy all

governing users and systems. A user may also desire to selected a higher level of security

than the predefined minimum. (NPS-CS-02-001, January 2002)

A user or application, however, may quickly become overwhelmed with

the security setting details, potentially resulting in degraded security or performance. By

developing security definitions that encompass detailed security settings required by

users or applications, the complexity of the selection process for the security settings can

be simplified to a reasonable level. One approach would involve the use of the following

Network Security levels: high, medium and low. (NPS-CS-02-001, January 2002) High

security level would utilize strong levels of security attributes, medium level, moderate

level of security attributes, and low level, low to no security attributes.

By implementing this approach the system security resource manager or

security engineer is responsible for presetting security variables and ranges in accordance

with choices offered to users or applications. A mapping of allowable security settings to

security levels providing a range of selection or specific values will be required to

properly enforce the system security policy. (NPS-CS-02-001, January 2002)

11

1.1.2 The Notion of Network Modes

Networks exist in a variety of states, providing users and systems with

varying levels of service. On one occasion the network may experience heavy levels of

traffic resulting in a poor performance. At other times the network may be limited in the

availability of resources due to maintenance, and at other times the network may be

performing at its optimum level. To fully incorporate the performance and reliability of

the network into a security mechanism, the notion of network modes is introduced.

There are numerous situations in which a network security policy will be

required to dynamically change to properly address the current operational threats and

needs, as well as the availability of resources and network performance. In the midst of

a highly sensitive intelligence operation, a transmitted report will require the highest

possible security to ensure the information and the source remain protected. In another

scenario, a unit confronted with serious emergency will require the fastest possible

transmission, and may not be concerned with transmission protection. (NPS-CS-02-001,

January 2002) Therefore a requirement exists for a dynamic security mechanism that can

appropriately adjust to meet the needs of the system, users or applications. One approach

is to use the following network modes: normal, impacted, and crisis. Normal mode is

defined as ordinary operating conditions with normal traffic load and no heightened

threat conditions. Impacted mode may be defined when the network/system is

experiencing high levels of traffic and therefore certain security selection may not be

available due to efficiency constraints. Emergency mode may be defined as a situation

that requires the highest level of security or the lowest level dependent on the situation

and policy. (NPS-CS-02-001, January 2002)

1.2 Mapping Abstract Parameters to Security Mechanism

A mapping of abstract dynamic parameters to resident security mechanisms is

required to properly enforce policy decisions. For example, network modes may be

mapped to security level ranges and ultimately to security attributes and settings. The

security resource manager and security engineer would define the network modes and

security levels to provide the users and applications with appropriate security service as

translated into QoSS choices. Once defined, the complexity of the security mechanism

12

and security attribute selection is transparent to the user. (See Figure 2.3)

Mapping Security Attributes to Security Policy

High

MediumImpacted

Low

High

Medium

Crisis Low

High

MediumNormal

Low

Security AttributesSecurity LevelNetwork Mode

Broad Fine
System Admin/
Security ExpertsUsers

ENCRYPTION: DES
AUTHENTICATION: MD5

Granularity

ENCRYPTION: NONE
AUTHENTICATION: NONE

ENCRYPTION: NONE
AUTHENTICATION: NONE

ENCRYPTION: 3DES
AUTHENTICATION: MD5

ENCRYPTION: DES
AUTHENTICATION: MD5

ENCRYPTION: 3DES
AUTHENTICATION: MD5
ENCRYPTION:3 DES
AUTHENTICATION: SHA
ENCRYPTION: AES
AUTHENTICATION: SHA

ENCRYPTION: NONE
AUTHENTICATION: MD5

Figure 2.3. Mapping Security Attributes to Security Policy.

1.3 Costing for QoSS

As mentioned earlier, use of security services has a direct impact on systems,

users and/or applications. The cost may differ depending upon the actual service

provided in relation to funding, bandwidth, processing time, packet overhead, or memory

requirements. Providing resource managers, users, or applications with a costing

framework for security services will enable them to make appropriate security selection

according to their needs and the availability of resources. In some cases a user may

decide to forego a certain level of security as a result of the impact it may have on

bandwidth availability. Likewise a user may decide to increase security after consulting

the costing framework. (NPS-CS-02-001, January 2002)

A costing framework as described above, see Figure 2.4, will require a matrix of

cost expressions relative to security services and security attributes. Further granularity

will be required to incorporate system resources including existing loads on the

13

processor, memory and network, as well as any limitations pre-established by security

levels and network modes. (NPS-CS-02-001, January 2002) A costing framework model

can provide the user with general information about the impact of certain security settings

(network modes/security levels). The complexity of the costing calculation and reference

mapping would remain transparent to the user.

The development of a detailed costing framework is beyond the scope of this

thesis but is described here to lay the groundwork for future efforts.

Costing Framework Model

hilo

CPU
Processing TimeBandwidth

hilo hilo

Delay

QoSS
Mechanism

Internet

Security Policy

Security Selections

Network
Mode

Security
Level

Normal
Impact
Emerg

High
Medium
Low

Figure 2.4. Costing Framework Model.

D. CONCLUSION

Quality of Security Service (QoSS) stems from the origins of Quality of Service

(QoS), providing a mechanism to access security services in accordance with the user and

the system requirements and the network environment. Security services can be defined

in via various levels of granularity of integrity, confidentiality, non-repudiation,

authentication, etc. To provide further integration of security mechanisms into the

surrounding environment, dynamic parameters, i.e. environmental related variables with

a defined range of values, can be mapped to adjustable levels of security protection in

14

accordance with policy. In order to manage the security mechanism’s impact on

resources and services, a costing framework is required to provide system and security

managers with a tool for monitoring and adjusting security services.

Internet Protocol Security (IPsec), a security mechanism utilized to provide a

range of security protection per packet at the network layer, is an ideal proof of concept

platform to demonstrate how a specific security mechanism can be modulated to provide

different levels of security response in accordance with QoSS. The following chapter will

explain in detail the IPsec system architecture to provide the reader an understanding of

the security mechanism.

15

III. SYSTEM ARCHITECTURE

A. INTRODUCTION

In this chapter I will discuss the origins and architecture of IPsec. The roots of

IPsec spawned from the growth in popularity and dependency on network

communications. It became quickly evident that all information sent across the Internet

was susceptible to theft and modification. A means of protecting network packets soon

became critical to most business and government organizations. The first attempt

involved a simple “protect-all” approach to network security, Virtual Private Networks

(VPN). However, with the added resource cost of network security on resources, this was

not always the most efficient solution. IPsec introduced the ability to provide a range of

security services through predefined set of security attributes ultimately defined by a

security policy.

B. OVERVIEW OF IPSEC

The Internet Protocol (IP) has become the norm for network electronic

communication in business, government and private life. However, the very definition of

IP is fraught with vulnerabilities. IP packets have no inherent security. (Doraswamy,

Naganand and Harkins, Dan, 1999, 41-55) Therefore, it is quite a trivial matter to spoof,

modify and inspect an IP packet without authorization from the sender. IPsec was

developed to address these problems by defining a security mechanism for sending data

across an insecure medium.

Initial attempts at developing IP Security such as Virtual Private Networks

(VPN), see Figure 3.1 resulted in very rigid security systems and a binary security choice:

security or no security. There were no intermediate security choices. IPsec can provide

users and systems with multiple selections of security attributes, which can enable, for

example, the security mechanism to adapt to changing needs, all in accordance with the

security policy.

16

IPsec VPN

IPsec vs. VPN Security Mechanisms

R
an

ge
 o

f S
ec

ur
ity

N
o

Se
cu

ri
ty

Se
cu

ri
ty

Figure 3.1. IPsec vs. VPN Security Mechanisms.

IPsec was designed to provide an efficient and effective cryptographic security

mechanism for IP version 4 and IP version 6. Refer to Figure 3.2. The mechanism

provides the following services: access control, connectionless integrity, data origin

authentication, protection against replays (a form of partial sequence integrity),

confidentiality (encryption), and limited traffic flow confidentiality. These services are

applied at the IP layer, providing security for IP and/or upper layer protocols. (Kent, S

and Atkinson, R, 1998) The cryptographic algorithms are applied in accordance with

system security policies that are defined within IPsec.

The IPsec implementation in OpenBSD version 2.8, researched in this thesis,

consists of the following components (see Figure 3.2): Security Policy Database (SPD),

Security Association Database (SAD), Internet Security Association and Key

Management Protocol (ISAKMP), KeyNote, and Internet Key Exchange (IKE). A

Security Association is defined as negotiated security terms for communications between

two or more peers. The Security Policy Database (SPD) defines the authorized security

associations. Security Association Database defines the security associations that have

been established. The Internet Security Association and Key Management Protocol

17

(ISAKMP) define a framework for security association management and key negotiation.

KeyNote is the trust management component that handles the mapping of policy to

security attributes. Internet Key Exchange is the mechanism used to negotiate security

associations with peers.

The IPsec as present in this research exists independent of ISAKMP, KeyNote

and IKE (all described later) in our operating systems and environments. For the sake of

consistency and relevancy to the research provided, I will cover only the IPsec version

specific to OpenBSD version 2.8.

Changes to IPsec security variables and rules can be managed via Keynote. Local

rules and policy are stored initially in the ISAKMP database (isakmpd.conf). During

IPsec initialization, the information stored in isakmpd.conf is loaded into memory and

cached in the SPD. Peer and service security associations and rules are stored initially in

the Keynote Database and cached in the Security Association Database (SAD) as security

associations (SA) once established through a successful peer negotiation (discussed

later). (Doraswamy, Naganand and Harkins, Dan, 1999, 57-79)

The IPsec process consists of two phases. Phase One involves the authentication

among the peers and the negotiation of security parameters for Phase Two

communications. The process of dynamically authenticating peers is managed according

to the Internet Key Exchange (IKE) protocol. Phase Two is the actual authenticated and

protect communication between peers. (Doraswamy, Naganand and Harkins, Dan, 1999,

57-79)

IPsec can be used on a variety of system architecture models: host-to-host,

gateway-to-gateway and gateway-to-host/host-to-gateway. (Doraswamy, Naganand and

Harkins, Dan, 1999, 57-79)

OpenBSD IPsec incorporates the concept of trust and security policy management

by implementing KeyNote. The research performed in this thesis utilizes the OpenBSD

IPsec mechanism as a model for discussion and implementation.

18

IPSec
Processing

Kernel

User Mode

KeyNote Interpreter

isakmpd.conf

SAD

IP Input
Routine

SA
Setup

IKE Daemon

KeyNote
Database

SPD

IP Output
Routine

Internet
Peer

Internet

IPsec ArchitectureEnd-User

Figure 3.2. IPsec Architecture.
(After: Blaze, Matt, Ioannidis, John, and Kermoytis, Angelos D., February 2001)

C. IPSEC ARCHITECTURE

1. Security Services Provided by IPsec

The overall challenge of IPsec is to provide confidential, integrity, nonrepudiation

and availability to network communications. IPsec provides the following security

services that may be combined to meet these requirements: origin authentication, data

integrity, data confidentiality, anti-replay protection and limited traffic confidentiality. It

utilizes two methods to protect IP packets: Encapsulating Security Payload (ESP)

providing data integrity, confidentiality and anti-replay protection; and Authentication

Header (AH) providing only data integrity and anti-replay protection. In addition, IPsec

can provide packet protection using transport or tunnel mode. Transport mode is used to

protect upper level protocols. Tunneling mode is used to protect the entire packet

(Doraswamy, Naganand and Harkins, Dan, 1999, 57-79) Each mode can be used with

either ESP or AH, so there are four possible IPsec packet formats, each of which will be

explained in further detail below.

19

1.1 Encapsulated Security Protocol (ESP)

ESP provides data packets with confidentiality, integrity, source authentication

and protection against replay attacks. This protection is accomplished by: (Doraswamy,

Naganand and Harkins, Dan, 1999, 81-89)

- Inserting a new header after the IP Header but before the data of the
packet,

- Appending a trailer to the packet

- Inserting IP protocol 50 to identify ESP. This protocol is used to enable
Firewalls and routers to distinguish IPsec packets for processing and
forwarding purposes.

Confidentiality and authentication are provided cryptographically. Encryption

involves the conversion of data into unreadable form by using a reversible transformation

(encryption algorithm i.e. DES, AES, IDE, etc.) Authentication is the process of

cryptographic identity and integrity verification of transmitted data (authentication

algorithms SHA MD5 and RIPEMD). [Cryptography and Network Security Principles

and Practice] ESP can use any combination of encryption and authentication algorithms,

as long as they are supported by the security mechanism. ESP can also be used without

an encryption algorithm, or without an authentication algorithm. ESP without both

encryption (NULL cipher) and authentication (NULL authenticator) algorithms, provides

no security and results in a pointless drain of system resources, and therefore, typically is

not supported. (Doraswamy, Naganand and Harkins, Dan, 1999, 81-89)

The ESP packet, ESP header, original packet, and ESP trailer are encrypted in the

following manner: (see Figure 3.3) (Doraswamy, Naganand and Harkins, Dan, 1999,

81-89)

- The ESP header is not encrypted. This is done to allow for recipients and
gateways (types of IPsec configurations discussed later) to process the
packet according to IP Address (part of the Security Parameter Index,
SPI).

- The original Data is encrypted

- The ESP Trailer is partially encrypted to allowing for data processing. The
unencrypted portion on the trailer includes the Security Parameter Index
(SPI) and destination IP address to enable SA identification, and the
sequence number, authentication data and padding (if required). The
justification for unencrypted portions will become clear in a moment.

20

IP HEADER

DATA

ESP TRAILER

ESP HEADER

ENCRYPTED

AUTHENICATED

ESP- Protected IP Packet

Figure 3.3. ESP- Protected IP Packet.
(After: Doraswamy, Naganand and Harkins, Dan, 1999, 49)

The order of processing for an ESP-protected packet on receipt is:

- Verify the sequence number

- Verify integrity

- Decrypt the data

ESP uses Cipher Block Chaining (CBC) and Initialization Vectors (IV) to

strength its provided security. CBC is used to mask patterns of identical blocks within

the same datagram. An Initialization Vector (IV) is a non-secret binary vector, which is

different for every datagram, used as initialization input for encryption algorithms and to

synchronize cryptographic equipment. By using CBC and IV, identical plaintext payloads

will be encrypted to different cipher text payloads. The cipher text output is also random

in appearance, a characteristic of a good cipher, and embeds the plaintext with the

previous cipher ultimately strengthening the entropy of the following plaintext input to

the cipher. See Figure 3.4. (Simpson, W. A., March 1999)

21

Encrypting and Decrypting using CBC and IV

Encrypting Decrypting

Encrypt

XOR

Plaintext#2

IV

Key

Cipher
text#1

Encrypt

XOR

Plaintext#1

Cipher
text#2

Encrypt Encrypt

Cipher
text#1

Cipher
text#1

XOR XOR

Plaintext#1 Plaintext#1

Key

Key

Key

IV

Figure 3.4. Encrypting and Decrypting using CBC and IV.
(After: Simpson, WA, March 1999)

A quick review of the CBC/IV encrypting and decrypting process follows.

The process of encrypting using CBC and IV is: (Simpson, W A, 1999, 1-3)

- An IV is used in an XOR operation with the first block of plaintext.

- The encryption key is used to encrypt the result of the XOR operation and
generates a cipher text block.

- For the next successive blocks of plaintext, the previous ciphertext is
XOR’d with the plaintext

Conversely, the process of decrypting using CBC and IV is simply the reverse:

(Simpson, W A, 1999, 1-3)

- The encryption key is used to decrypt the cipher text block. - An IV is
used in an XOR operation with the first decrypt block of text.

- For the next successive blocks of cipher text, the previous cipher text is
XOR’d with the decrypted block.

In transport mode, ESP protects the upper layer protocol by inserting an ESP

header between the IP Header and the upper –layer protocol. The upper-layer protocol

and data are then encrypted. (Doraswamy, Naganand and Harkins, Dan, 1999, 81-89) In

22

tunneling mode, ESP protects the entire data packet by embedding the packet in between

the ESP header and trailer. A new IP header is then generated and added to the packet

(Doraswamy, Naganand and Harkins, Dan, 1999, 81-89)

1.2 Authentication Header (AH)

The Authentication Header (AH) is utilized to maintain integrity of data,

authenticated the sender, and provide (optionally) non-replay protection. However, it

does not provide confidentiality. Structurally AH is simpler than ESP packets. It adds a

header but no trailer to the data packet, and all information in the AH packet is

unencrypted. There is no need for padding, a pad length indicator or an initialization

vector. AH can be used alone within an SA or in conjunction with ESP in a separate SA.

AH packets are composed of the following: (see Figure 3.5) (Doraswamy,

Naganand and Harkins, Dan, 1999, 91-98)

- Original IP Header

- AH Header. This contains the SPI which is used to locate the SA in the
SADB during receipt processing, protocol field number 51, sequence
number which is used to defend against replay attacks, and authentication
data field (digest of keyed MAC).

IP HEADER

DATA

AH TRAILER

AH HEADER AUTHENTICATED

AH- Protected IP Packet

Figure 3.5. AH-Protected IP Packet.

(After: Doraswamy, Naganand and Harkins, Dan, 1999, 51)

23

In transport mode, AH protects end-to-end communications by inserting the AH

header immediately following the IP Header and then authenticating the entire packet. By

authenticating the entire packet, the recipient can be ensured that it came from the actual

sender and was not captured, modified and resent. (Doraswamy, Naganand and Harkins,

Dan, 1999, 91-98)

In tunneling mode, the AH encapsulates the protected datagram and adds an

additional IP Header before the AH Header. (Doraswamy, Naganand and Harkins, Dan,

1999, 91-98)

1.3 IPsec Configurations

The material in this section is referenced from the following: (Doraswamy,

Naganand and Harkins, Dan, 1999, 49-80)

IPsec can be utilized to support three network configurations as shown in Figure

3.6.

The peer-to-peer configuration is used to support secure communication between

two IPsec end systems. In this situation, end systems would need a locally managed

IPsec mechanism to manage the security mechanism and policy.

The peer-to-gateway configuration is used to support an IPsec standalone user

communicating securely to an IPsec gateway or router. An IPsec gateway or router is an

IPsec mechanism that supports multiple users or an internal network.

The gateway-to-gateway configuration is used to support secure communication

between two or more IPsec gateways or routers.

24

Secure Communications

Unsecure Communications

Peer-to-Peer

Peer-to-Gateway

Gateway-to-Gateway

Figure 3.6

IPsec Configurations

Figure 3.6. IPsec Configurations.

1.4 Use of Transport and Tunnel Modes

The material in this section is referenced for the following: (Doraswamy,

Naganand and Harkins, Dan, 1999, 49-80)

As mentioned earlier, IPsec utilizes two modes for transport and tunneling. Refer

to Figure 3.7.

Transport mode is used typically in the peer-to-peer configurations. There is no

attempt to protect the identity of the sender and / or receiver when using this mode. The

security emphasis is on the upper level protocols.

Tunnel mode is typically used with peer-to-gateway, gateway-to-peer, and

gateway-to-gateway configurations. The security emphasis is on protecting

(confidentiality and/or integrity) the entire packet including the sender/receiver identity.

The original packet source and destination IP addresses are protected via encryption

and/or authentication (by means of insuring integrity). An additional IP

source/destination header is provided to the appropriate IPsec tunnel recipient. At the

gateway, the packet is unwrapped and the inner packet is forwarded to the ultimate end

25

system recipient.

Data

TCP/UDP HDR

DATA

TCP/UDP HEADER

IP HEADER

IPSEC HEADER

DATA

TCP/UDP HEADER

IP HEADER

IPSEC HEADER

TUNNEL IP HEADER

Transport Mode Tunnel Mode

IPsec Transport and Tunnel Modes

Figure 3.7. IPsec Transport and Tunnel Modes.
(After: Doraswamy, Naganand and Harkins, Dan, 1999, 57-80)

1.5 Security Associations (SA)

A Security Association (SA) can be referred to as a “simplex” connection path

established to provide security services to IP packets. The “simplex” path requires the SA

to represent either an AH or an ESP but not both, and only for one communication

direction. If additional services are desired another SA will be required. Likewise other

communications paths (such as a return path to the originator) will require a separate SA.

As a result, SA’s are uniquely identified by the security parameter index (SPI), ESP or

AH security protocol and the destination IP address. (Kent, S and Atkinson, R, November

1998) A secure communications path may require multiple SA’s to ensure all

requirements are met.

IPsec requires that: (Kent, S and Atkinson, R, November1998)

- A host or end system MUST support both transport and tunnel mode.

- A security gateway is required to support only tunnel mode.

26

1.6 Combining Security Associations

It is important to note that the IPsec mechanism only allows one security protocol,

AH or ESP to be used with an SA. However, there may be times when a security policy

calls for a combination of security services for a specific communications path that

requires more security attributes than is possible with only one SA. Therefore multiple

SAs are required to properly achieve the desired level of security as mandated by the

security policy. The use of multiple SAs is referred as a security association bundle or

SA bundle. The order of SA implementation sequence (ESP or AH first) is important and

is defined by the security policy. (Leiseboer, John, 2001)

There are two ways to implement an SA bundle: transport adjacency and iterated

tunneling.

Transport adjacency is the process of using more than one security protocol on the

same IP datagram without utilizing tunneling. Only one level of combination is allowed.

Additional nesting will not result in further security since all the IPsec processing will be

performed at the same instance at the destination. Figure 3.8 provides an example of

transport adjacency where first ESP provides confidentiality of IP data using encryption.

Then AH is used to add authentication to the datagram. When using transport adjacency,

the ordering of the applied SA bundle is important. As with the provided example, if AH

and ESP are used in conjunction, AH should be used as the first header after IP after ESP

security has been applied. This is justified by the fact that data integrity should be

performed on as much packet data as possible to achieve the desired security effect of

packet authentication. (Leiseboer, John, 2001)

Iterated tunneling is the process of applying multiple layers of security protocols

through IP tunneling. This enables multiple levels of nesting. With each tunnel being able

to originate or terminate at a different IPsec sites along the secure communications path.

Figure 3.9 show an example of iterated tunneling, both security end points are different.

This AH SA protects all traffic flowing between the two gateways. Host A and Host B

are provided security via an ESP SA. With iterated tunneling, various orderings of AH

and ESP are possible and sensible when bundling SAs. (Leiseboer, John, 2001)

27

Transport Adjacency

Security
Gateway

A

Security
Gateway

B

Host A Host B

ESP Security

AH Security

IP
Header AH ESP

TCP
Header

Data

Internet

Figure 3.8. Transport Adjacency.
(After: Leiseboer, John, 2001)

Iterated Tunneling

Security
Gateway

A

Security
Gateway

B

Host A Host B

AH Security

ESP Security

IP
Header ESP AH

TCP
Header

Data

Internet

IP
Header

Figure 3.9. Iterated Tunneling.
(After: Leiseboer, John, 2001)

28

1.7 Security Policy

A security policy defines the rules and regulations of a system. Specifically what

users are allowed to access to systems, applications, and data, what times during the day

are they allowed access (security system administrator may define only working hours

access to users), and what actions are users authorized to perform on the data

(permissions: read, write and/or execute). The challenge is to present a seamless approach

to controlling each user’s actions, in regards to the security policy. The system security

policy, for the purposes of this thesis, can be defined in terms of IPsec security

parameters. (Blaze, Matt, Ioannidis, John, and Keromytis, Angelos D, February 2001)

Security Policy is represented in IPSec via the fo llowing: (see Figure 3.10)

- Application Layer: (Blaze. Matt, Ioannidis, John, and Keromytis,

Angelos D, February 2001)

- <ISAKMPD.CONF> – initial peer security policy configuration

used in IKE Phase I IKE & initial Phase II SA negotiation

 - < KeyNote/ISAKMPD.Policy > – Local security policy

defined in Keynote semantics – queried during IPSec negotiation.

– Kernel Layer:

- Security Policy Database (SPD)– cached security policy

- Security Association Database (SAD) – cached valid

security association (SA)

29

SPDB

SADB

Kernel Layer Application Layer

Isakmpd.conf

KeyNote
Isakmpd.policy

IPsec Security Policy

Figure 3.10. IPsec Security Policy.
(After Blaze, Matt, Ioannidis, John and Keromytis, Angelos D., February 2001)

1.8 Security Policy Database (SPD)

The IPsec mechanism manages security policy efficiently by implementing a

Security Policy Database (SPD) in the Kernel to allow for quick reference by input and

output processing modules (discussed later). The Security Policy Database (SPD) is

implemented and maintained by a user or system administrator, or by an application

constrained by pre-defined rules or policy. In general, packets are either afforded IPsec

security services, discarded, or allowed to bypass IPsec, based on the applicable security

policies found in the SPD. (Kent, S and Atkinson, R, November 1998) SPD is

populated/updated by either manual keying or daemons (IKE/ISAKMPD/Photuris). See

Figure 3.11.

30

Implemented as extension

to routing table

SPD

PF_KEY
interface

Manual Keying

Key Management
Daemons

IPsec Security Policy Database (SPD) Populating Mechanisms

Figure 3.11. IPsec Security Policy Database (SPD) Populating Mechanisms.

(From: NPS-CS-02-003, January 2002)

Using one of these methods, the system’s security policy is translated into

database entries. The entries define the data traffic to be protected, what security

mechanism should be used, and with whom the system is authorized to speak. For each

packet entering or leaving the system, the SPD is queried to ensure the proper security

parameters and measures are applied. (Doraswamy, Naganand and Harkins, Dan, 1999,

57-79)

An SPD entry specifies one of three possible actions regarding all traffic that

matches that entry:

• Discard, implying that that the packet should not be allowed in or out.

• Bypass, implying that no security services should be applied nor should
any security services be expected.

• Protect, implying security services are required for outbound and inbound
packets.

IPsec policy is mapped to IP traffic via “selectors”. Information stored in SPD

may be located by any of the following search selectors: (see figure 3.12) source IP

address, destination IP address, Name (specific user or system), Protocol, and upper layer

31

ports. (Doraswamy, Naganand and Harkins, Dan, 1999, 57-79) Selectors can be either

specific values, ranges of allowed values or wild cards. (Kent, S and Atkinson, R,

November 1998)

The following are the in the SPD:

- Source IP – the source IP address in accordance with the security policy.

- Source Port – the source port to which the security policy applies.

- Destination IP – the destination IP address in accordance with the security

policy.

- Destination Port – the destination port to which security policy applies.

- Name – used to bind a policy to a specific user or system.

- SA IP – pointer to active SAs

- Protocol Type – TCP/UDP

- Policy Action:

- Require – Strict condition. If no SA exists, drop the packet.

- Acquire – Set-up SA and continue communications without

protection until IPSEC SA takes effect.

- Permit – Bypass IPSEC process– exception for specific packet

characteristics.

- Deny – Drop the packet without further processing.

In general, the first qualifying SPD entry found will be used to determine the

disposition of the current packet. The ability to use different selectors in the SPD allows

IPsec systems to provide flexible policy mechanisms.

32

Source
IP

Source
Port

Dest
IP

Dest
Port

Protocol

TCP/
UDP

SA
IP

Protocol
Type

TCP/
UDP

Policy
Action

Direction

-Require
-Acquire
-Permit
-Deny

-In
-Out

SPD

Security Policy Database (SPD)

Figure
3.12. Security Policy Database (SPD).
(From: NPS-CS-02-003, January 2002)

1.9 Security Association Database (SAD)

After an SA is established for communication with a remote host, the SA is

“cached” in the SAD. Each entry in the SAD represents one SA. Refer to Figure 3.13.

The SAD is first consulted for both inbound and outbound traffic to determine processing

requirements for the packets. If no SA is found (e.g. expired or non-existing SA in the

SAD) Phase II IKE negotiations are initiated with the remote host. (Kent, S and

Atkinson, R, November 1998)

Inbound packets are processed by indexing SA’s in the SAD with each of the

following packet fields: (Kent, S and Atkinson, R, November 1998)

- Outer Header's Destination IP address: the IPv4 or IPv6

Destination address.

- IPsec Protocol: AH or ESP, specifies the IPsec protocol to be

applied to the traffic on this SA.

 - SPI: the 32-bit value used to distinguish among

33

 SAs terminating at the same destination and using the same

 IPsec protocol.

Outbound packets are processed by using security parameter indexes (SPI), to

index SA’s in the SAD and the SPD. This is done in order to allow SA bundles, in which

a policy entry in the SPD involves multiple SAs in a specific order. (Kent, S and

Atkinson, R, November 1998)

An entry in the SAD will contain the value or values, which were created during

peer negotiations. These fields can have the form of specific values, ranges, wildcards, or

an "OPAQUE" (inaccessible due to fragmentation or encryption). The ESP and AH

Protocol fields form an entry may contain NULL for one or the other but not for both.

These values are used by the sending peer to determine the SA’s required for packet

processing. The receiving peer uses these values to check that the inbound packet adheres

to the receiver’s security policy. (Kent, S and Atkinson, R, November 1998)

The following SAD fields are used in IPsec processing:

- Sequence Number Counter: a 32-bit value used to generate the

Sequence Number field in the AH or ESP headers.

- Sequence Counter Overflow: a flag indicating whether overflow

of the Sequence Number Counter should generate an auditable

event and prevent transmission of additional packets on the

SA.

- Anti-Replay Window: a 32-bit counter and a bit-map used to determine

whether an inbound AH or ESP packet is a replay.

- AH Authentication algorithm, keys, etc.

- ESP Encryption algorithm, keys, IV mode, IV, etc.

- ESP authentication algorithm, keys, etc. If the authentication service is

not selected, this field will be null.

- Lifetime of this Security Association: a time interval after which an SA

must be replaced with a new SA (and new SPI) or terminated, plus an

indication of which of these actions should occur.

- IPsec protocol mode: tunnel, transport or wildcard.

34

- Path MTU: any observed path MTU and aging variables.

SAD: Security Association Database

Implemented as
a hash table in Kernel

SAD
PF_KEY
interface

SA identifier set for incoming policy matching

SRC
IP

IPSEC
Proto

SPI Seq
Counter

Seq Flag
overflow

Anti-
replay

AH
info

ESP
info

Lifetime
info

IPSEC
P mode

Path
MTU

SA identifier set for outgoing policy matching

DEST
IP

IPSEC
Proto

SPI Seq
Counter

Seq Flag
overflow

Anti-
replay

AH
info

ESP
info

Lifetime
info

IPSEC
P mode

Path
MTU

SA identifier tuple

SRC
IP

IPSEC
Proto

SPI Seq
Counter

Seq Flag
overflow

Anti-
replay

AH
info

ESP
info

Lifetime
info

IPSEC
P mode

Path
MTU

Figure 3.13. SAD: Security Association Database.
(From: NPS-CS-02-003, January 2002)

1.10 Selectors

“Selectors” are parameters that are used to locate or select a SA or SA bundle in

the SPD and SAD. A selected SA (or SA bundle) may be very detailed or general,

depending on the selectors used. Traffic between two peers/gateways may only require a

single SA in each direction for a uniform set of services. Or traffic between

peers/gateways may utilize a series of SA’s to handle different security services for

different supported applications. The following are the IPsec selector parameters. (Kent,

S and Atkinson, R, 1998)

- Source Address – can be an address range, network prefix, wild

card or a specific address.

- Destination Address – can be an address range, network prefix,

wild card or a specific address.

- Name – used to identify a policy associated with an authorized

user or system.

35

- Protocol – the transport protocol.

- Upper-Layer Ports – may use individual UDP or TCP ports or wild

cards

- Data Sensitivity Level

The following table describes the possible selector expression combinations in

SAD and SPD: (Kent, S and Atkinson, R, November 1998)

Field Traffic Value SAD Entry SPD Entry

src addr single IPaddr single range,wild single range, wild

dst addr single IPaddr single range,wild single range,wild

xpt protocol Xpt protocol single range,wild Single, wildcard

src port Single src port single range,wild Single, wildcard

dst port Single dest port single range,wild Single, wildcard

user id Single user id single range,wild Single, wildcard

sec. labels Single value single range,wild Single, wildcard

Table 3.1. Possible Selector Combination.

(After: Kent, S and Atkinson, R, 1998)

1.11 IPsec Processing Modules

The IPsec mechanism uses input and output modules, a processing module

and a SA set-up module to receive, send, and process IPsec packets, and setup SA as

required, respectively. The following sections will describe modules.

1.11.1 IPsec Input Module

IPsec’s input routine provides an interface and buffer to all

incoming message traffic. The packets are filtered accordingly and are either (1) passed

to the appropriate upper level process or internal user, (2) used to generate an IPsec

negotiation with a peer or, (3) discarded. See Figure 3.14.

The following is a pseudo code representation of the IPsec input

36

routine module: (Blaze. Matt, Ioannidis, John, and Keromytis, Angelos D., February

2001)

- Receives IP packets are received from external source.

- Queries Security Policy Database to determine whether to

forward the packet or discard: Query SPD(Packet’s source IP,

source port, destination IP, destination port, Protocol, IPSEC

Protocol type):

- If “Require” then set “Require” Flags and forward packet

to IPSEC Processing module.

- If “Acquire” then set Acquire flags and forward to IPSEC

processing module.

- If “Permit” (non-IPSEC packet) then forward to

appropriate higher- layer protocol.

- If “Deny” then discard packet.

- If Null (no entry in SPD) and IPSEC Packet then discard.

- If Null (no entry in SPD) and non-IPSEC Packet forward

to appropriate higher- level protocol.

IPsec Input
Module

SPD

Input Module IPsec Processing
Module

Higher-Level
Protocol

Discard
(Deny/Null &
IPsec packet)

Query SPD for
Policy

Permit or Null
Non-IPsec
packet

Require/Acquire

37

Figure 3.14. IPsec Input Module.
1.11.2 IPsec Output Routine

IPsec’s output routine provides an interface and buffer for all

outgoing message traffic. The packets are filtered and processed in one of three ways:

provide IPsec protection, provide no protection, or discard. See Figure 3.15.

The following is a pseudo code representation of the IPsec input

routine module: (Blaze. Matt, Ioannidis, John, and Keromytis, Angelos D., February

2001)

 - Packets are received from Higher/Upper Layer Applications.

- Queries Security Policy Database to determine whether IPsec packet

protection required for packet - Query SPD(Packet’s source IP, source

port, destination IP, destination port, Protocol):

- If “Require” then set “Require” Flags and forward packet to

IPsec Processing module.

- If “Acquire” then set Acquire flags and forward to IPsec

processing module.

- If “Permit” (non-IPsec packet) then forward to network for

transmission.

- If “Deny” then discard packet.

- If Null (no entry in SPD) then forward to network for

transmission.

38

IPsec Output
Module

SPD

Output Module IPsec Processing
Module

Higher-Level
Protocol

Discard
(Deny/Null &
IPsec packet)

Query SPD for
Policy

Permit or Null
Non-IPsec
packet

Require/Acquire

Permit & Null
For non IPsec

packet

Figure 3.15. IPsec Output Module.

1.11.3 IPsec Processing Module

The IPsec processing module provides an interface for the

input/output modules, the SAD and the SA set-up module. After IPsec packets are

verified and approved by the SPD, they are forwarded to the IPsec processing module for

further processing. For incoming packets, the SAD is queried to determine whether or not

an SA exists in the SAD. If not, the IPsec peer negotiation phase is queued. If an SA

exists the IPsec processing module utilizes the information provided by the existing SA

to remove the IPsec protection from the packet for further processing. Similarly for

outgoing packets, the SAD is queried, possibly triggering IPsec peer negotiation and

finally using existing SAs to encapsulate the packet with the appropriate IPsec protection.

(Blaze. Matt, Ioannidis, John, and Keromytis, Angelos D, February 2001)

The following is pseudo code of the IPsec processing module:

- Receives IP packets from the Input/Output module.

- Query SAD (Packet’s source/destination IP, Security Parameter Index

(SPI), incoming/outgoing).

- If “SA Exists” and “incoming” then process IPsec packet resulting in a

39

de-capsulated IP Packet. Forward packet back to the IPsec Input

module for further processing.

- If “SA Exists” and the packet is “outgoing” then process the IP packet

resulting in an encapsulated/IPsec protected IP Packet. Forward IPsec

packet to external network for routing.

- If “No SA Exists” then forward packet to SA set-up

1.11.4 SA SetUp Module

The IPsec SA set-up module provides an interface between the

SAD, SPD, KeyNote DB, and IKE processing module. The SA set-up module is involved

in the IPsec SA generation process. The SA setup module is triggered when it receives

an IP packet from the IPsec processing module. (Blaze. Matt, Ioannidis, John, and

Keromytis, Angelos D, February 2001)

The following pseudo code represents the SA set-up module:

- If packet is “Incoming” then

 - Performs a double check routine and if SA exists for

packet then packet is dropped (should have been

determined earlier in process suspect situation)

- Otherwise: IKE Daemon triggered.

- Awaits completion of IKE process.

- Updates SPD and SAD with peer communications security

associations and policies.

- Discards original unprotected packet.

- If packet “Outgoing” then

- Queries SPD for relevant policy:

- If policy is found then trigger the IKE Daemon.

 - Otherwise drop the packet

- Awaits completion of the IKE process.

- Updates the SPD and SAD with peer

communications security associations and policies.

- Discards the original unprotected packet.

1.12 Internet Key Exchange (IKE)

40

The Internet Key Exchange provides IPsec with a means of performing

automated SA creation for network peer communication. Specifically, IKE is an

automated protocol fo r generating, negotiating, and creating Security Associations (SA)

between network peers. (Savolainen, Sampo, 1999)

IKE is a hybrid protocol developed from the following protocols:

(Savolainen, Sampo, 1999)

- Oakley key exchange and

- Skeme key exchange

- Key Management Protocol (ISAKMP) framework.

Without IKE, IPsec would require costly manual SA generation seriously

limiting the system ability to function at a dynamic level. (Savolainen, Sampo, 1999)

IKE can be triggered by the following specific events (See figure 3.16)

(Savolainen, Sampo, 1999)

- Remote peer negotiation initiation

- Timer scheduled events

- Kernel – PF_Key upcalls for new SA/ expired Sas. A PF_Key is key

management kernel interface used to trigger an IKE/ISAKMP daemon.

- User – signals or first- in first out queuing (FIFO)

41

IKE/isakmpd
event-driven

daemon

negotiation initiations
Remote peer

User

Signals
or

FIFO

Kernel
(new SA
expired

SA)

Timer scheduled
events

Upcalls
(PF_KEY)

Controlling events for IKE

Figure 3.16. Controlling Events for IKE.

(From: NPS-CS-02-003, January 2002)

1.13 Internet Security Association And Key Management Protocol
(ISAKMPD)

The following section is references (Maughan, D., Schertler, M.,

Schneider M., Turner J, November 1998).

The Internet Security Association and Key Management Protocol

(ISAKMP) defines the required payload for exchanging key generation and

authentication data between negotiating IPsec peers The ISAKMP daemon, ISAKMPD,

defines the mechanics of implementing a key exchange protocol, and the negotiation of a

security association.

ISAKMPD defines how peers:

- Communicate

- Construct their messages

- Establish state transitions required for secure communications.

In order for peers to communicate within the confines of the IPsec, they

42

must first negotiate on a Security Associations (SA). This negotiation is performed via

the Internet Key Exchange (IKE). ISAKMPD defines the specifics and the syntax

required to complete the negotiation.

There are two parts to IPSec’s security processing as defined by

ISAKMPD (See figure 3.17)

- Security Association Negotiations. Peers negotiate to agree on the

security association that will define their secure communication.

- Security Association Processing. SAs are utilized for secure

communication until they are deleted, modified, or expire.

IPsec Security Association Process Defined by ISAKMPD

IPsec

Negotiate
SA’s

Phase II
IPsec SA

Negotiations

Phase I
IKE SA

Negotiations

Aggressive
ModeMain Mode

Use SA for
Secure

communications

Quick Mode

Figure 3.17. IPsec Security Association Process Defined by ISAKMPD.

Security association negotiations utilizes a two phases for security

negotiations:

- Phase I – peers negotiate for IKE security associations (SA) (where

none currently exists). There are two choices for Phase I: Main-Mode

and Aggressive-Mode

- Main-Mode – protects the identity of peers by sending a sequence of

43

authentication information. (Refer to figure 3.18)

- Utilizes 6 messages:

- Messages1-2: used for negotiating the security

policy for the exchange. Sent in the clear.

- Messages 3-4: used for Diffie-Hellman

keying material exchange.

- Messages 5-6: used for authenticating the

peers with signatures or hashes and optional

certificates. Sent encrypted.

IKE Phase I - Main Mode

Peer A -Initiator Peer B - Responder

ISAKMP Header & IKE SA

ISAKMP Header & IKE SA

ISAKMP Header, Key Exchange Payload, Nouce

ISAKMP Header, Key Exchange Payload, Nouce

ISAKMP Header, Encrypted [Identity Payload, Authenticator]

ISAKMP Header, Encrypted [Identity Payload, Authenticator]

Message 1

Message 2

Message 3

Message 4

Message 5

Message 6

Figure 3.18. IKE Phase I – Main Mode.

(After: Maughan, D., Schertler, M., Schneider M., Turner J, November1998) -

Aggressive Mode- does not protect the identity of peers and

sends all authentication information at the same time. This mode

is used when bandwidth is a concern. (Refer to Figure 3.19)- It

utilizes three messages:

- Message 1: proposes the policy, and passes data for key-

exchange, a nonce and some information for identification.

Sent unencrypted.

44

- Message 2: a response, which authenticates the responder and

concludes the policy and key-exchange. Sent in the clear.

- Message 3: used for authenticating the initiator and provides

a proof of participation in the exchange. Encrypted.

- Note: The identity of the responder cannot be protected, but

by encrypting the last message the identity of the initiator is

protected.

IKE Phase I - Aggressive Mode

Peer A -Initiator Peer B - Responder

ISAKMP Header, IKE SA, Key Exchange Payload, Identity Payload

ISAKMP Header, Encrypted [Identity Payload, Authenticator]

ISAKMP Header, IKE SA, Key Exchange Payload, Identity Payload

Message 1

Message 2

Message 3

Figure 3.19. IKE Phase I Aggressive Mode.

(After: Maughan, D., Schertler, M., Schneider M., Turner J, November 1998)

- Phase II – peers negotiate for IPsec security associations (SA) or

new keying material using the previously established IKE SA’s for

protection. There is only one mode for phase two: Quick Mode.

- Quick Mode is bound to Phase I in that it relies on Phase I to

establish a valid IKE SA to protect IPsec SA negotiation. Quick

mode is used to derive keying material and negotiate shared policy

for non-ISAKMP SAs between peers. No peer authentication is

required since Phase I establishes peer identities bound to security

45

associations. Exchange of keys to determine how the data between

peers will be encrypted – establishing IPSec SAs. All the payloads

except ISAKMP header are encrypted. A Diffie-Hellman key

exchange may be done to achieve perfect forward secrecy (PFS).

PFS means that an IPSec SA's key was not derived from any other

secret. This ultimately strengthens the overall security of the

exchange. Many SAs can be negotiated during one Quick Mode

exchange. Either one of the parties might initiate the quick mode

exchange regardless of who initiated the first phase.

- Quick Mode uses three messages:

- Message 1: Contains the ISAKMP header

(unencrypted) and then includes proposed SA(s),

identification & authentication information (for both

sender and receiver) and nonce information (all

encrypted)

- Message 2: Contains the ISAKMP header

(unencrypted) and then includes responding proposed

SA(s), identification & authentication information (for

both sender and receiver) and nonce information (all

encrypted)

- Message 3: Contains the ISAKMPD header

(unencrypted) and a verifying Hash (encrypted).

46

IKE Phase II - Quick Mode

Peer A -Initiator Peer B - Responder

ISAKMP Header, encrypted[Hash(1) Payload, SA, Nouce Payload,
Identity Payload of A, Identity Payload of B]

Message 1

Message 2

Message 3

ISAKMP Header, encrypted[Hash(2) Payload, SA, Nouce Payload,
Identity Payload of A, Identity Payload of B]

ISAKMP Header, encrypted[Hash(3) Payload

Figure 3.20. IKE Phase II – Quick Mode.

(After: Maughan, D., Schertler, M., Schneider M., Turner J, 1998)

1.14 isakmpd.conf

 The following section contains information referenced from

(ISAKMP.CON(5), OpenBSD Programmer’s Manual, October 1998). isakmpd.conf is

the configuration file for the isakmpd daemon. It provides the initial security

associations and keys used for IPsec peer negotiations.

Once the IPsec process determines that Phase I negotiations are required,

isakmpd.conf is queried to establish a secure communication channel to perform

communication negotiations for Phase II. Isakmpd.conf provides the IKE Daemon with

both Phase I and Phase II security proposals that are cached in memory until the IPsec

process is restarted or reinitialized.

Isakmpd.conf utilizes the traditional .ini style file construct. The file is

broken down into sections indicated by “[]”. Within each section parameters are

defined using the <tag> = <tag value or range value>“. Tag values may consist of other

section names. This results in a tree-like recursive structure. Unless a tag and tag value

is a reserved isakmpd.conf word, it is defined by declaring the tag or tag value as a

section later in the file. This continues until all tags and tag values have been defined in

47

terms of reserved words or values.

 Many of the Tag fields have default values that are loaded from default

structures in the iskampd.conf code in the event that no value is present. However for

completeness and portability it is recommended that implementers provide specific

definitions to ensure functionality and policy enforcement.

1.14.1. isakmpd.conf Parameters

The following section contains information referenced from

(ISAKMP.CON(5), OpenBSD Programmer’s Manual, October 1998).

The following is a description of typical parameters found in the

isakmpd.conf file- General Section

This section contains the global configuration parameters. The

typical ones used are:

 - Policy-file: Keynote policy file. Default is "/etc/isakm-

 pd/isakmpd.policy".

- Default-Phase-2-Suites - A list of Phase 2 suites that will be used

when establishing dynamic SAs. Default is : QM-ESP-3DES-

SHA-PFS-SUITE.

- Retransmits: Number of times a negotiation is retransmitted.

- Check-interval: Interval between “watchdog” checks of

connections required to be up at all times.

- Exchange-max-time: Maximum time in seconds for an exchange

to setup before aborting.

 - Listen-on: IP-addresses to listen on.

- Shared-SAD Defined if multiple instances can be executed on

top of one SAD

- Pubkey-directory: Path to directory holding public keys. The

default directory is: "/etc/isakmpd/pubkeys".

48

- Phase I Section

This section is used to establish ISAKMP negotiation SAs

. The following are typical tags used in this section:

- IP-address: The name of the ISAKMP peers at the given IP-

address.

- Default: The name of the default ISAKMP peer.

Note: The name defined here will be used as a section name later

on in the isakmpd.conf file.

- Phase II Section

This section is used to define the IPsec negotiation SAs.. The

following are typical tags used in this section:

- Connections: List of IPsec "connection" names that should be

established automatically during daemon startup.

Note: These names are section names where further parameter

information is defined. See Section <IPsec-connection> below.

- Passive-connections: The list of IPsec "connection" names

recognized and initialized.

- Keynote Section

This section is used to establish Keynote dependency parameters.

The following are typical tags used in this section:

- Credential-directory: Directory, which contains directories for

Ids. This in turn contains the files named ``credentials'' and

``private_key''.

- X509-Certificate Section

This section is used to establish Certificate dependency

parameters. The following are typical tags used in this section:

 - CA-directory: Directory for PEM certificates of

49

 certification authorities which are trusted to sign other certificates.

- Cert-directory: Directory for PEM certificates that

 are trusted to be valid.

- Accept-self-signed: Defines certificates not originating from a

trusted CA that will be accepted.

 - Private-key: Private key match for certificate public key.

 - Referred-to sections

 -_ISAKMP-peer_: Negotiation parameters for ISAKMP peer

 - Phase: The constant 1.

 - Transport: Name of the transport protocol. The default is

 UDP.

- Port: Optional. If UDP used, the UDP port number. The default

value is 500, which is the IANA-registered number for ISAKMP.

 - Local-address: The local IP-address.

 - Address: IP-address of the peer.

 - Configuration: The name of the ISAKMP-configuration section. See

 <ISAKMP-configuration>.

- Authentication: If available, authentication data for this specific peer. -

ID: If available, the name of the section that describes the local client ID.

If not available, the default value is the address of the local interface

where packets are being sent to at the remote daemon. See <Phase1-ID>.

- Remote-ID: If available, section name that describes the remote client

ID. If not available, it defaults to the address of the remote daemon. See

<Phase1-ID>.

- Flags: List of flags specific to further handling of ISAKMP SA.

Currently no specific ISAKMP SA flags are defined.

50

 - _PhaseI-ID_

 - ID-type: The ID type as defined by the RFCs. For Phase I:

IPV4_ADDR, IPV4_ADDR_SUBNET, FQDN, USER_FQDN, or

KEY_ID.

- Address :If the ID-type is IPV4_ADDR, then this tag should exist with

an IP address.

- Network: If the ID-type is IPV4_ADDR_SUBNET this tag should exist

with a network address.

- Netmask: If the ID-type is IPV4_ADDR_SUBNET this tag should exist

with a network subnet mask.

- Name: If the ID-type is FQDN, USER_FQDN, or KEY_ID, this tag

should exist with domain name, user@domain, or other identifying string.

 ISAKMP-configuration

DOI: The domain of interpretation as defined by the RFCs. Default is

IPSEC.

EXCHANGE_TYPE: The exchange type as defined by the RFCs.

ID_PROT is used for main mode and AGGRESSIVE is used for

aggressive mode

Transforms: A list of proposed transforms to use for protecting the

ISAKMP traffic.

 ISAKMP-transform

- ENCRYPTION_ALGORITHM: The encryption algorithm defined by

RFCs or ANY to indicate that any encryption algorithm proposed will be

accepted.

-KEY_LENGTH: Used for encryption algorithms with variable key

length.

 - HASH_ALGORITHM: The hash algorithm as defined by RFCs, or

51

 ANY.

- AUTHENTICATION_METHOD: The authentication method as defined

by RFCs, or ANY.

- GROUP_DESCRIPTION: Symbolic group names used for Diffie-

Hellman exponentiations, or ANY. The names include:

 MODP_768, MODP_1024, EC_155 and EC_185.

- PRF: The algorithm for the keyed pseudo-random, or ANY.

 - Life: A list of lifetime descriptions, or ANY.

 Lifetime

 - LIFE_TYPE: SECONDS or KILOBYTES depending on the type of

 the duration. This field may NOT be set to ANY.

- LIFE_DURATION: An offer value, a minimum acceptable value, and a

maximum acceptable value. Can also be set to ANY.

 IPsec-connection_

- Phase: The constant 2.

- ISAKMP-peer: ISAKMP-peer name used to establish a connection. The

value is the name of an <ISAKMP-peer> section.

- Configuration: IPsec-configuration section name.

 See <IPsec-configuration>.

- Local-ID: If present, the name of the section that describes the optional

local client ID. See <IPsec-ID>.

- Remote-ID: If present, this is the name of the section that describes the

optional remote client ID presented to the peer. See

 <IPsec-ID>.

- Flags: A list of flags controlling the further handling of the IPsec SA.

Currently only one flag is defined:

52

- Active-only If this flag is present and the <IPsec-connection> is part of

the phase 2 connections, it will not automatically be used for accepting

connections from the peer.

IPsec-configuration

- DOI : The domain of interpretation as defined by the RFCs. Normally

IPSEC. If unspecified, defaults to IPSEC.

- EXCHANGE_TYPE: The exchange type as defined by the RFCs. For

quick mode this is QUICK_MODE.

- Suites: A list of protection suites (bundles of protocols) available for

protecting the IP traffic. Each of the list elements is a name of an

 <IPsec-suite> section.

IPsec-suite

- Protocols: List of the protocols included in the protection suite. Each of

the list elements is a name of an <IPsec-protocol> section.

IPsec-protocol

- PROTOCOL_ID: The protocol as defined by the RFCs. Acceptable

values include: IPSEC_AH and IPSEC_ESP.

- Transforms: List of transforms usable for implementing the protocol.

Each of the elements is a name of an <IPsec-transform> section.

- ReplayWindow: The window size used for replay protection. Normally

not adjusted.

IPsec-transform

- TRANSFORM_ID: The transform ID as defined by the RFCs.

- ENCAPSULATION_MODE: The encapsulation mode as defined by the

RFCs. Normal values include: TRANSPORT or TUNNEL.

- AUTHENTICATION_ALGORITHM: The optional authentication

algorithm for the ESP transform.

53

- GROUP_DESCRIPTION: An optional (provides PFS if present) Diffie-

Hellman group description. The values are

 the same as GROUP_DESCRIPTION's in <ISAKMP-

 transform> sections described above.

- Life: List of lifetimes, each element is a <Life-time> section name.

IPsec-ID

- ID-type: The ID type as defined by the RFCs. The current value for

IPsec is IPV4_ADDR or IPV4_ADDR_SUBNET.

- Address: If the ID-type is IPV4_ADDR, then an IP address should be

listed.

- Network: If the ID-type is IPV4_ADDR_SUBNET, then an IP address

should be listed.

- Netmask: If the ID-type is IPV4_ADDR_SUBNET, then a network

subnet mask should be listed.

- Protocol: If the ID-type is IPV4_ADDR or IPV4_ADDR_SUBNET,

then this tag indicates which transport protocol should be transmitted over

the SA. If left unspecified, all transport protocols between the two address

(ranges) will be sent (or permitted) over that SA.

- Port: If the ID-type is IPV4_ADDR or IPV4_ADDR_SUBNET, then

this tag indicates which source or destination port is allowed to be

transported over the SA (depending on whether this is a local or remote

ID). If left unspecified, all ports of the given transport protocol will be

transmitted (or permitted) over the SA. The Protocol tag must be

specified in conjunction with this tag.

1.14.2. isakmpd.conf Example

The following section contains information referenced from

54

(ISAKMPD.CONF (5), OpenBSD Programmer’s Manual, October 1998)

The following is an example isakmpd.conf file. The file provides

for communication between two peers using both the ESP and AH protocols. Specifically

it loads two security proposals. One for ESP using AES for an encryption algorithm,

SHA for encryption authentication, and Tunnel mode, and enforcing Perfect Forward

Security. The other for AH, using SHA for an authentication algorithm, tunnel for the

transport mode and perfect forward security (PFS). Notice how after the required sections

of [General] and [Phase 1], the rest are dependent on previous entries in the mandatory

sections. Such as [Peer-131.120.8.95/131.120.8.91]

A configuration sample for the isakmpd ISAKMP/Oakley (aka IKE) daemon.

 [General]

 Listen-on= 10.1.0.2

 Policy-file= /etc/isakmpd/isakmpd.policy

 Retransmits= 3

 Exchange-max-time= 120

 [Phase 1]

 10.1.0.1= ISAKMP-peer-west

 [Phase 2]

 Connections= IPsec-east-west

 [ISAKMP-peer-west]

 Phase= 1

 Local-address= 10.1.0.2

 Address= 10.1.0.1

 Configuration= Default-main-mode

 Authentication= mekmitasdigoat

 [IPsec-east-west]

55

 Phase= 2

 ISAKMP-peer= ISAKMP-peer-west

 Configuration= Default-quick-mode

 Local-ID= Net-east

 Remote-ID= Net-west

 [Net-west]

 ID-type= IPV4_ADDR_SUBNET

 Network= 192.168.1.0

 Netmask= 255.255.255.0

 [Net-east]

 ID-type= IPV4_ADDR_SUBNET

 Network= 192.168.2.0

 Netmask= 255.255.255.0

 # Main mode descriptions

 [Default-main-mode]

 EXCHANGE_TYPE= ID_PROT

 Transforms= 3DES-SHA

 # Quick mode descriptions

 [Default-quick-mode]

 EXCHANGE_TYPE= QUICK_MODE

 Suites= QM-ESP-AES-SHA-PFS-SUITE,QM-AH-SHA-PFS-SUITE

 # KeyNote credential storage

 [KeyNote]

 Credential-directory= /etc/isakmpd/keynote/

56

 # Certificates stored in PEM format

 [X509-certificates]

 CA-directory= /etc/isakmpd/ca/

 Cert-directory= /etc/isakmpd/certs/

 Private-key= /etc/isakmpd/private/local.key

 # Main mode transforms

 ######################

 [3DES-SHA]

 ENCRYPTION_ALGORITHM= 3DES_CBC

 HASH_ALGORITHM= SHA

 AUTHENTICATION_METHOD= PRE_SHARED

 GROUP_DESCRIPTION= MODP_1024

 Life= LIFE_3600_SECS

Quick mode protection suites

 ##############################

 # AES

 [QM-ESP-AES-SHA-SUITE]

 Protocols= QM-ESP-AES-SHA

 # AH

 [QM-AH-SHA-PFS-SUITE]

 Protocols= QM-AH-SHA-PFS

 # Quick mode protocols

 # AES

57

 [QM-ESP-AES-SHA-PFS]

 PROTOCOL_ID= IPSEC_ESP

 Transforms= QM-ESP-AES-SHA-PFS-XF

 # SHA

 [QM-AH-SHA-PFS]

 PROTOCOL_ID= IPSEC_AH

 Transforms= QM-AH-SHA-PFS-XF

 # Quick mode transforms

 # AES

 [QM-ESP-AES-SHA-PFS-XF]

 TRANSFORM_ID= AES

 ENCAPSULATION_MODE= TUNNEL

 AUTHENTICATION_ALGORITHM= HMAC_SHA

 GROUP_DESCRIPTION= MODP_1024

 Life= LIFE_3600_SECS

 # AH

 [QM-AH-MD5-PFS-XF]

 TRANSFORM_ID= SHA

 ENCAPSULATION_MODE= TUNNEL

 GROUP_DESCRIPTION= MODP_768

 Life= LIFE_3600_SECS

 [LIFE_3600_SECS]

 LIFE_TYPE= SECONDS

 LIFE_DURATION= 3600,1800:7200

58

1.14.3 isakmpd.conf Process

 The IKE daemon reads the isakmpd.conf during IPsec

initialization to load Phase I and Phase II security proposals, representing the local

security policy, in memory. The IKE daemon is initialized during system start or when a

“reinitialized” system call is executed (by either the kernel, upper- level process or a

user). Once the security proposals are loaded in memory, the IPsec process can initialize

the IKE Daemon to begin IPsec peer negotiations for Phase I and Phase II. (See figure

3.21

ISAKMPD.CONF

IPSEC MECHANISM
IKE DAEMON

At IPsec (re)initialization
Load security proposals
From isakmpd.conf

When prompted, use security
proposals in memory to negotiate
for security associations (SA)

Using IKE SA’s
negotiate for security
associations (SA)
with peer

isakmpd.conf Process

1

23

Figure 3.21. isakmpd.conf Process.

1.15 Security Policy – KeyNote

The following section contains information referenced from (Blaze, Matt,

Feigenbaum, Joan and Keromytis, Angelos D., April 1998)

A security mechanism requires a policy to define the security requirements and

establish rules and parameters. Security policies may have a variety of levels of

interpretation, from human language descriptions to the fine granular specifications

59

describing encryption and authentication methods and key lengths. Of course, accurate

mapping is required throughout the layers of the interpretation to ensure specific

requirements are not inadvertently modified or disregarded during translation.

Previous versions of IPsec utilized static security policies. This implied that a

security policy is invoked on the security mechanism prior to system initialization and

then remains unchanged until system is taken off- line to make appropriate policy

adjustments.

The OpenBSD version of IPsec utilizes a “trust management” infrastructure –

Keynote. Specifically, KeyNote provides a mechanism for defining local policies used by

IPsec in negotiating SA’s between peers. Keynote provides a straightforward syntax for

defining both security credentials and local security policies. Credentials are a means of

identifying specific network “principals” (users, hosts, etc.). The policies and credentials

are combined to form “assertions”. The assertions define actions authorized by or for

specified key holders. By signing the assertions, they may be safely transmitted across

“untrusted” networks. The assertions are divided into three sections:

- Authorizer identity – may involve local policy or signed key for
credentials.

- Key predicate – key(s) being authorized

- Action predicate – action being authorized

A respondent IPsec node having received a security proposal from an initiator

IPsec node, would first perform a query on its local KeyNote using the syntax of an

assertion to find out if the initiator’s proposed security proposal is allowed. KeyNote

would compare the proposal to its stored policy assertions and credentials to determine

whether the proposed actions are valid in accordance with the local policy. KeyNote

would reply to the respondent IPsec node with a Boolean response. The respondent IPsec

node would either establish a secure communications path with the initiator (Boolean

response true) or not (Boolean response false). (see Figure 3.22)

60

KeyNote
Interface

Keynote

IKE
Daemon

IKE SA protected
Negotiations
communications

Pass proposed
IPsec SA

KeyNote is queried using
assertion syntax to determine
if proposed SA is valid IAW
security policy

KeyNote Process

Figure 3.22. KeyNote Process.

1.15.1. isakmpd.policy

The following section contains information referenced from

(KEYNOTE(5), OpenBSD Programmer’s Manual Pages, October 1999)

KeyNote policy assertions in OpenBSD IPsec are defined in

isakmpd.policy.

The assertions are divided into field sections using the tag: value

syntax. The following are authorized field sections for KeyNote:

- Authorizer – only mandatory field. Identifies authorizer

- Comment

- KeyNote Version

- Licensees

- Local-Constraints

- Signatures

61

- Conditions – contains the action/policy predicates in

accordance with the security policy.

1.15.2 Condition Attributes

The following section contains information referenced from

(KEYNOTE(5), OpenBSD Programer’s Manual Pages, October 1999)

The following attributes are currently defined in the condition

assertion section: (Note that in KeyNote/iskampd.policy all values are in lowercase)

- app_domain: Always requires IPsec policy.

- Domain of Interpretation (Doi) : Always defined as ipsec.

- Initiator: yes if the local daemon is initiating the Phase II SA, no

otherwise.

- phase_1: aggressive or main dependent on Phase I mode

requirement.

- PFS: yes if a Diffie-Hellman exchange will be performed during

phaseII/ Quick Mode, no otherwise.

- ah_present, esp_present, comp_present: yes if an AH, ESP, or

compression proposal was received respectively, no otherwise.

- ah_hash_alg: md5, sha, ripemd, or des, based on the hash

algorithm. Defines the generic transform to be used in the AH

authentication.

- esp_enc_alg: des, des-iv64, 3des, rc4, idea, cast, blowfish,

3idea,-iv32, rc4, null, or aes, based on the encryption algorithm

specified in the ESP proposal.

- comp_alg: oui, deflate, lzs, or v42bis, based on the compression

algorithm specified in the compression proposal.

- ah_auth_alg: hmac-md5, hmac-sha, des-mac, kpdk, or hmac-

ripemd. Based on the authentication method specified in the AH

proposal.

62

- esp_auth_alg: hmac-md5, hmac-sha, des-mac, kpdk, or hmac-

ripemd. Based on the authentication method specified in the ESP

proposal.

- ah_life_seconds, esp_life_seconds, comp_life_seconds :

Lifetime of the AH, ESP, and compression proposal, in seconds. If

none listed the corresponding attribute will be set to zero.

- ah_life_kbytes, esp_life_kbytes, comp_life_Kbytes: Lifetime of

the AH, ESP, and compression proposal, in kbytes of traffic. If

none listed the corresponding attribute will be set to zero.

- ah_encapsulation, esp_encapsulation, comp_encapsulation:

tunnel or transport.

- comp_dict_size : log2 maximum size of the dictionary, according

to the compression proposal.

- comp_private_alg: Integer specifying the private algorithm in

use, according to the compression proposal.

- ah_key_length, esp_key_length: Number of key bits to be used

by the authentication and encryption algorithms respectively

- ah_key_rounds, esp_key length: Number of rounds of the

authentication and encryption algorithms respectively (for variable

round algorithms).

- ah_group_desc, esp_group_desc, comp_group_desc: The

Diffie-Hellman group identifier from the AH, ESP, and

compression proposal, used for PFS during Quick Mode. Valid

values are 1 (768-bit MODP), 2 (1024-bit MODP), 3 (155-bit EC),

4 (185-bit EC), and 5 (1536-bit MODP).

- phase1_group_desc: The Diffie-Hellman group identifier used

in IKE Phase I.

- remote_filter_type, local_filter_type, remote_id_type :

63

 IPv4 address, IPv4 range, IPv4 subnet, IPv6 address, IPv6

range, IPv6 subnet, FQDN, User FQDN, ASN1 DN, ASN1 GN, or

Key ID, based on the Quick Mode Initiator ID, Quick Mode

Responder ID, and Main Mode peer ID respectively

- remote_filter_addr_upper, local_filter_addr_upper,

remote_id_addr_upper: For filter_type IPv4 address or IPv6

address, they contain the respective Ipv4 or Ipv6 address. For

IPv4 range or IPv6 range, these contain the upper end of the

address range. For IPv4 subnet or IPv6 subnet, they contain the

highest address in the specified subnet

- remote_filter_addr_lower, local_filter_addr_lower,

remote_id_addr_lower: For filter_type is IPv4 address or IPv6

address, these contain the respective address. For IPv4 range or

IPv6 range, these contain the lower end of the address range. For

IPv4 subnet or IPv6 subnet, these contain the lowest address in the

specified subnet.

- remote_filter, local_filter, remote_id: For filter_type of an

address range or subnet, these are set to the upper and lower part of

the address space separated by a dash ('-') character (if the type

specifies a single address, they are set to that address). For FQDN

and User FQDN types, these are set to the respective string. If the

Key ID payload contains non-printable characters then the

hexadecimal representation of the associated byte string (lower-

case letters) is used. Otherwise, they are set to the respective

string. For ASN1 DN, these are set to the text encoding of the

Distinguished Name in the payload sent or received. The format is

the same as that used in the Licensees field.

- remote_filter_port, local_filter_port, remote_id_port:

Transport protocol port.

64

- remote_filter_proto, local_filter_proto, remote_id_proto:

etherip, tcp, udp, or the transport protocol number, depending on

the transport protocol set in the IDci, IDcr, and Main Mode peer ID

respectively.

- remote_negotiation_address: IPv4 address of the remote IKE

daemon.

-local_negotiation_address: IPv4 address of the local interface

used by the local IKE daemon for this exchange.

- GMTTimeOfDay: UTC date/time, in YYYYMMDDHHmmSS

format.

- LocalTimeOfDay: local date/time, in YYYYMMDDHHmmSS

format.

1.15.3 Condition Predicate Syntax

 The condition section utilizes a form of predicate logic to state

assertions for evaluating the security proposal. The following are specific syntax rules:

(ISAKMPD.POLICY(5), OpenBSD Programmer’s Manual, October 1998) (Blaze, Matt

Ioannidis, J and Keromytis, Angelos, February 2001)

- No blank lines are allowed

- Assignment operator is “==”

- Logical And operator is “&&”

- Logical Or operator is “||”

- Parenthesis may be used to provide further granularity to statements.

- Assertion must be terminated with “=> true”

1.15.4 Example isakmpd.policy

 The following is an example KeyNote isakmpd.policy file. Notice

that the following operations are authorized:

- Telnet (port 23) using AES as the encryption algorithm, SHA as the

65

encryption authentication algorithm and “tunnel” as the transportation

mode.

- Finger (port 79) using AH as the protection protocol, SHA as the

authentication algorithm, and “tunnel” as the transportation mode.

KeyNote-Version: 2

Authorizer: "POLICY"

Licensees: "passphrase:mekmitasdigoat"

Conditions: app_domain == "IPsec policy" &&

 ((esp_present == "yes") && (esp_encapsulation == “tunnel”) &&

 ((local_filter_port == "23") ||

 (remote_filter_port == "23")) &&

 (esp_enc_alg == "aes")) ||

 ((ah_present == "yes") && (ah_encapsulation == “tunnel”) &&

 ((local_filter_port == "79") ||

 (remote_filter_port == "79")) &&

 (ah_auth_alg == "hmac-sha"))

 -> "true";

D. ANALYSIS

The following is a consolidated description of the IPsec processes presented in

section B .

1. IPsec (Re)Initialization

As mentioned earlier in the isakmpd.conf section, only during IPsec startup and

re-initialization is the isakmpd.conf read and are security proposals loaded into memory.

2. IPsec Output Processing

The following is the step-by-step processing of an outbound packet through an

IPsec mechanism: (Blaze, Matt, Ioannidis, J and Angelos D. Keromytis, February 2001)

Refer to Figure 3.23.

- 1) A packet arrives from a high- level protocol.

- 2) The SPD is consulted to determine if the packet requires IPSec protection.

- 3a) If protection is not required, the packet is forwarded to the external network.

66

- 3b) If IPSec protection is required the packet is forwarded to IPSec processing

module where

- 4) The SAD is consulted for SA specifics for the packet.

- 5a) If an SA exists for the packet, the appropriate security transformation are

applied to the packet and it is forwarded to the external network.

- 5b) If no SA exists the SA management module is triggered.

- 6) The SA set-up module consults the SAD to verify that no SA exists.

- 7a) If one does, the packet is dropped.

- 7b) The KeyNote Database is consulted using packet information via the

KeyNote interpreter to determine if the packet should be accepted, dropped or

needs IPSec protection. Note: This step does not occur in the OpenBSD version

2.8 of IPsec.

- 8) In the event of the requirement for IPSec protection, the IKE daemon is

initiated.

- 9) IKE then negotiates security parameters with the distant peer. The distant

peer will reply with a proposed setting of secure communication parameters.

- 10) The Keynote database will be consulted to ensure that distant peer

parameters comply with local policy.

- 11) If all is compliant, SA may be created updating the SAD and SPD.

- 12) At completion the original packet is discarded.

67

IPSec
Processing

Kernel

User Mode

KeyNote Interpreter

isakmpd.conf

SAD

IP Input
Routine

SA
Setup

IKE Daemon

KeyNote
Database

SPD

IP Output
Routine

Internet
Peer

Internet

IPsec ArchitectureEnd-User

1

2
3a

3b
4

5a

5b

6
7a

7b

8

91011

11
12

Figure 3.23. IPsec Architecture.

(After: Blaze. Matt, Ioannidis, John , and Keromytis, Angelos D, 2001
3. IPsec Input Processing

The following is a step-by-step process of outbound packet through an IPsec

mechanism: (Blaze, Matt, Ioannidis, J and Angelos D. Keromytis, February 2001) [Refer

to Figure 3.24

- 1) A packet arrives from an external network.

- 2) The SPD is consulted.

- 3a) If packet is an IPsec packet, forwarded to IPsec processing module

- 3b) If packet is an IPsec packet and SPD says to process packet, the packet is

forwarded to internal system or upper- layer protocol/application.

- 3c) If SPD says to discard, the packet is discarded with no further processing.

- 4) The SAD is consulted for SA specifics for the packet.

- 5a) If an SA exists, the packet is dencapsulated and sent back to the IPsec input

process module.

- 5b) If an SA does not exist, the SA SetUp module is triggered

68

- 6) The SPD is consulted.

- 7a) If the packet is authorized/valid, it is forwarded to internal system or upper-

layer protocol/application.

- 7b) If SPD says to discard, the packet is discarded with no further processing.

- 8) The SA set-up module consults the SAD to verify that no SA exists.

- 9a) If one does, the packet is dropped.

- 9b) The KeyNote Database is consulted using packet information via the

KeyNote interpreter to determine if the packet should be accepted, dropped or

needs IPSec protection. Note: This step does not occur in OpenBSD version of

IPsec.

- 10) In the event of the requirement for IPSec protection, IKE daemon is

initiated.

- 11) IKE then negotiates security parameters with the distant peer. The distant

peer will consult its own KeyNote Policy and reply with a proposed setting of

secure communication parameters.

- 12) The Keynote database will be consulted to ensure distant peer parameters

comply with local policy.

- 13) If all is compliant, SA may be created updating the SAD and SPD.

- 14) At completion the original packet is discarded.

69

IPSec
Processing

Kernel

User Mode

KeyNote Interpreter

isakmpd.conf

SAD

IP Input
Routine

SA
Setup

IKE Daemon

KeyNote
Database

SPD

IP Output
Routine

Internet
Peer

Internet

IPsec ArchitectureEnd-User

1

2

3a

4

5b

8
9a

9b

10

111213

13
14

3b

5

6
7a 3c

7b
Figure 3.24. IPsec Architecture.

(After: Blaze. Matt, Ioannidis, John, and Keromytis, Angelos D, February 2001)

E. CONCLUSION

In this Chapter I reviewed the IPsec architecture, describing each of the

components and the “incoming” and “outgoing” IP packet process. I introduced

OpenBSD’s security policy implementation, KeyNote, explaining how it interfaces with

the IPsec mechanism. I then concluded by providing a detailed step-by-step outline of

IPsec’s input and output processing.

The next chapter, Design and Process, will detail the methodology involved in the

parameterization of IPsec.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

IV. DESIGN AND PROCESS

A. INTRODUCTION

In this chapter, I will outline and discuss the design and process for

parameterizing IPsec. Specifically I will discuss two design goals: providing granularity

to KeyNote, and parameterizing and improving the isakmpd.conf / isakmpd.policy

(KeyNote) security proposal loading process. The goal of parameterizing IPsec is to

enable IPsec to assume a dynamic func tionality. This dynamism is based on new,

external, environment parameters that can appropriately cause IPsec security attribute

adjustments for protected communications.

In order to incorporate the environment/dynamic parameters into the IPsec

mechanism, the security policy found in KeyNote must be extended appropriately. By

adding dynamic parameters to KeyNote, the security mechanism can accurately perform

Boolean assertion operations incorporating the specified value of the dynamic

parameters. The dynamic parameters will also have to be properly loaded into the

assertion query mechanism.

IPsec mechanisms negotiate security attributes between peers in the form of

security proposals. A security proposal consists of a set of authorized security attributes

that can be associated with a particular communication connection to meet with the local

security policy. A security proposal set can be made up of one or more security

proposals each with a set of security attributes.

Currently the IKE loading process retrieves security proposal ranges from

isakmpd.conf. However, during peer negotiations, security proposals, which are loaded

during (re)initialization from isakmpd.conf, are verified via iskampd.policy. This

requires security policy to be defined in multiple areas; namely isakmpd.conf and

isakmpd.policy. For efficiency and ease of management, this process will be modified so

that security proposal ranges are loaded directly from KeyNote/isakmpd.policy. In

essence, my goal is to streamline the storage of secur ity policy to only one location:

KeyNote/isakmpd.policy.

72

Another modification is required to properly incorporate the dynamic parameter

values into the proposal set loaded from isakmpd.policy. This will provide dynamic

parameterization to the IPsec ensuring that only appropriate security proposals are loaded

during (re)initialization.

Implementing these modifications to the IPsec mechanism will ultimately

parameterize the IPsec (re)initialization and security proposal negotiation process.

B. PROVIDING GRANULARITY TO KEYNOTE

1. Goal

The process of providing granularity to KeyNote involves adding more attributes,

both security- and non-security-related to KeyNote. This will result in a more complex

security policy, increasing the overall potential parameter combinations possible in

KeyNote/isakmpd.policy. To reflect dynamic, environmental parameters in IPsec, the

security policy mechanism, KeyNote, will require modification. These modifications will

enable the local security policy to change according to changes in the new dynamic

external parameters.

The earlier examples of Network Mode and Security Level will be used as

external parameters and will be added to KeyNote’s condition assertion. The extended

semantics of the security policy assertions will allow any dynamic external parameter and

any number of security-related parameters to be represented. The KeyNote Query

mechanism will then require the ability to import the current value of the dynamic

external parameters to perform a query based on the new dynamic parameters.

2. Process Review

The following is a brief review of the current KeyNote structure and KeyNote

query mechanism, and a description of the required modifications.

2.1 Current Keynote Process Review

Currently, KeyNote’s structure is composed of IPsec specific parameters.

Dynamic parameters will need to be added to the structure. Likewise the KeyNote query

structure utilizes only IPsec specific parameters.

2.1.1 Keynote Structure

KeyNote’s structure is made up of IPsec security parameters and

73

related application parameters that describe allowed interactions between different

network peers. IPsec security parameters include encryption algorithms, authentication

algorithms, transportation modes, key length, key lifetimes, identification and

authentication certificates, and other security related variables. Related application

parameters include local and remote ports utilized by applications.

2.1.2 Current Keynote Query Mechanism

The KeyNote query mechanism is handled by the KeyNote

interface. To summarize the peer negotiation process, a brief description follows. The

initiating IPsec peer prompts the IPsec mechanism by launching a security supported

application (i.e. telnet or finger). The initiator’s IPsec mechanism sends a security

proposal to the responder peer to establish communication in support of the specified

application. The responder peer uses the proposal received to perform a query on its

KeyNote. If a security proposal is accepted, the responder returns the accepted security

proposal. The initiator then performs a query on the local KeyNote to ensure that security

proposal is authorized. If the query returns TRUE, the initiator returns a final message to

the responder completing the negotiation handshake. The query performed on KeyNote

verifies the security proposal’s compliance with locally defined policy. The query

mechanism loads the security proposals and performs the query on KeyNote receiving a

Boolean response reflecting whether or not the security proposal is consistent with the

local KeyNote policy.

2.1.3 Current KeyNote Process Flow

The following is a step-by-step review of the current KeyNote

process. See Figure 4.1. For a more details refer to Chapter Three IPsec Architecture.

74

KeyNote

KeyNote
Interface

IKE Daemon

Current
KeyNote Process

1b

SADB

SPD

7

IKE Peer
Connection

-esp_presen==“yes” && esp_enc_alg==“des” &&
local_filter_port== “80” && remote_filter_port==“80”

-ah_presen==“yes” && ah_auth_alg==“sha” &&
local_filter_port== “23” && remote_filter_port==“23”

……………………………………………………………
…………………………………………………………….

Peer Proposal

ESP-DES

4

56

Security Proposal Range
Storage

Upper Layer Application

1a

1ai

Responder IPsec
Mechanism

3
8

2

Figure 4.1. Current KeyNote Process.

- 1a - Upper Layer Application triggers Initiator’s IKE

Daemon and starts peer negotiation with responder peer.

- 1ai – Security proposal ranges are retrieved from

initiator’s memory

- 1b –. Initiator security proposal set is send to responder.

- 2 - Responder receives initiator’s security proposal,

processes the proposal and replies by sending an acceptable

security proposal to the initiator peer. (Note: specifics on

the responder’s security mechanism are purposely obscure

to demonstrate the importance of independent system

architecture).

- 3 – Initiator peer receives the responder’s security

proposal.

- 4 – Responder Peer’s proposal is submitted to the

Initiator’s KeyNote interface.

75

- 5 – Initiator’s KeyNote interface loads query mechanism

and submits the query to KeyNote, receiving a Boolean

response.

- 6 – Return to Initiator IKE Daemon.

- 7 – If a proposal is accepted then security associations

are constructed and loaded into Initiator’s SAD and SPD.

- 8 – If the proposal is accepted, then the initiator sends an

acknowledgement to the responder peer. Otherwise, the

initiator notifies the responder peer of the refusal and the

proposal is discarded.

2.2 Modified Keynote Structure and Query Mechanism

In order to incorporate dynamic parameters into the KeyNote structure and

query mechanism, the following modifications will be required.

2.2.1 Modifications to Keynote Structure

The dynamic/environment parameters, Network Mode and

Security Level, and their authorized local ranges, need to be represented in the condition

section of the KeyNote structure. This will add further levels of granularity and

complexity to KeyNote.

For example, the condition statement in KeyNote, shown in figure

4.2, authorizing telnet communication between two peers using 3DES as the encryption

algorithm will have to be further defined for all ranges of network mode and security

levels. At this point, the security policy can provide different levels of security attributes

to the peer connection associa tion by varying the encryption algorithm used in

accordance with the security level and network mode values.

76

KeyNote

KeyNote-Version: 2
Authorizer: "POLICY"

Licensees: "passphrase :mekmitasdigoat"
Conditions: app_domain == "IPsec policy" &&

((esp_present == "yes") &&
((local_filter_port == "23") ||

(remote_filter_port == "23")) &&
(esp_enc_alg == "aes")) ||

((ah_present == "yes") &&
((local_filter_port == "79") ||

(remote_filter_port == "79")) &&
(ah_auth_alg == "hmac-sha"))

-> "true";

esp_present == "yes“ – ESP encapsulated packet
local_filter_port == "23- outgoing Telnet communications

remote_filter_port == "23“- incoming Telnet communications
esp_enc_alg == “3des“ – encryption algorithm is 3DES

esp_present == "yes“ – ESP encapsulated packet
local_filter_port == "23- outgoing Telnet communications

remote_filter_port == "23“- incoming Telnet communications
esp_enc_alg == “3des“ – encryption algorithm is 3DES

An Example of a Condition Statement in KeyNote

Figure 4.2. An Example of a Condition Statement inKeyNote.

It is important to ensure that the dynamic parameter modifications

to KeyNote do not depend upon on IPsec peers having identical dynamic parameters. It is

essential for compatibility that KeyNote incorporates the local dynamic parameters for

local use only and that the query process remain independent of peer dynamic

parameters.

2.2.2 Modifications to the KeyNote Query Mechanism.

The KeyNote query mechanism will require modification to allow

for dynamic parameter value injection. This will enable the query to properly evaluate

security proposals with respect to the current value of the dynamic parameters. The

modifications will provide assurance that changes to dynamic parameters that might

occur during the negotiation are reflected accordingly in KeyNote decisions.

2.2.3 Modified KeyNote Process Flow

The following is a step-by-step review of the modified KeyNote

process. Refer to Figure 4.3.

77

Dynamic Parameter Console

Dynamic
Parameter

Storage

KeyNote

KeyNote
Interface

IKE Daemon

Modified
KeyNote Process

1b

SADB

SPD

8

IKE Peer
Connection

-network mode == “normal” && security_level == “high”
&& esp_present==“yes” && esp_enc_alg==“des” &&

local_filter_port== “80” && remote_filter_port==“80”
-network mode == “normal” && security_level == “low”
ah_present==“yes” && ah_auth_alg==“sha” &&
local_filter_port== “23” && remote_filter_port==“23”

……………………………………………………………

Peer Proposal

ESP-DES

4

67

Security Proposal Range
Storage

Upper Layer Application

1a

1ai

5

Responder IPsec
Mechanism

2

3
9

Figure 4.3. Modified KeyNote Process.

- 1a - Upper Layer Application triggers initiator’s IKE

Daemon and starts peer negotiation with responder peer.

- 1ai – Security proposal ranges are retrieved from

initiator’s memory

- 1b - Initiator security proposal is sent to responder.

- 2 - Responder receives initiator’s security proposal,

processes the proposal and replies by sending an acceptable

security proposal to the initiator peer. (Note: specifics on

the responders security mechanism are purposely obscure

to demonstrate the importance of independent system

architecture).

- 3 – Initiator peer receives the responder’s security

proposal.

- 4 – Responder’s proposal is submitted to the initiator’s

KeyNote interface.

- 5 - Initiator’s KeyNote injects current dynamic parameter

78

values into the query structure.

- 6 – Initiator’s KeyNote interface loads the query

mechanism and submits the query to KeyNote, receiving a

Boolean response.

- 7 – Return to initiator’s IKE Daemon.

- 8 – If the proposal is accepted then security associations

are constructed and loaded into initiator’s SAD and SPD.

- 9 - If the proposal is accepted, the initiator sends an

acknowledgement to the responder peer. Otherwise, the

initiator peer notifies the responder of the refusal and the

proposal is discarded.

3. Modification Phases

The modification of the KeyNote Structure and Query Mechanism will be

performed in the following phases:

3.1 Add Dynamic Parameters to KeyNote

The first step in the process of adding granularity to KeyNote, is

development of a method to add dynamic parameters and their ranges to KeyNote. It is

essential that the parameters be added properly to the current security policy. This implies

ensuring that all authorized values of the newly inserted parameters are correctly matched

with other corresponding values reflecting the security policy. For example, if Security

Level, with values High and Low, are added to KeyNote, the assertion would have to be

rewritten to account for all security attributes authorized when security level is Low and

High, respectively. This will add to the depth of the logical assertion as well as increases

its complexity. The importance of understanding KeyNote’s structure and syntax is

critical in performing the required modifications in achieving dynamic parameterization.

3. 2 Develop a Method to Inject Dynamic Parameters into the
KeyNote Query Mechanism.

The next step is to design and develop a method to inject the current

values of the dynamic parameters into the KeyNote query mechanism. This process will

involve understanding the current KeyNote query mechanism to determine how the

79

dynamic parameters values can be injected.

3.3 Develop a Console or Interface to Receive Dynamic Parameter
Selection/Adjustment.

 A method will be required to allow a system or a user to make changes to

dynamic parameters used to select security attributes in accordance with the security

policy. This mechanism must have the capability to effect immediate change on the

dynamic parameters and may trigger adjustments to IPsec mechanism.

3.4 Testing Modifications

Once all modifications have been performed, a thorough testing phase will

be required. Testing should involve at least two dynamic parameters (i.e. Network Mode

and Security Level) with at least two ranges for each. The query mechanism should be

tested to ensure that it is consistent and resistant to logical errors. All errors should be

documented and corrected if possible. Any uncorrected errors should be listed in the

Future Work Chapter Seven.

C. PARAMETERIZING AND IMPROVING ISAKMPD.CONF – KEYNOTE
PROPOSAL LOADING PROCESS

1. Goal

The (re)initialalization phase will require modification to incorporate the dynamic

IPsec parameters. The value of these parameters will have a direct effect on which

security proposals are loaded into memory for peer negotiations. Currently, local security

policy is represented in two areas: KeyNote/isakmpd.policy and isakmp.conf. This

causes a problem in the area of security policy management. To provide for coherent

policy management, the configuration process needs to be modified to utilize only

KeyNote/isakmpd.policy. Ultimately, the security policy will be managed in only one

database and will incorporate the granular dynamic parameters.

2. Process Review

The following is a brief review of the current configuration process of loading

security proposal ranges from isakmpd.conf. It is followed by a description of a

modified configuration process for loading security proposals from isakmpd.policy. This

modified process includes dynamic parameterization.

80

 2.1 Current Process Review

Currently, during the initialization phase, isakmpd.conf is read to retrieve

valid security proposal ranges. The data stays in memory, unmodified, until needed or a

re-initialization is triggered.

The following is a step-by-step review of the current process. Refer to

Figure 4.4.

Configuration
Process

Security Proposal Ranges
Storage

Current
(Re)Initialization

Process

3

1

Isakmpd.conf

2

Figure 4.4. Current (Re)Initialization Process.

- 1 – (Re)Initialization triggers the IPsec configuration

process.

- 2 – Read the isakmpd.conf for mechanism initialization

parameters and valid security proposal ranges.

- 3 – Load valid security proposals into memory for later use.

81

 2.2 Modified Process Review

 To effectively parameterize the configuration phase by

incorporating dynamic parameters, two modifications to the existing process are

required. First, the current value of dynamic parameters must be retrieved. Second,

valid security proposal ranges in accordance with the Network Mode and Security

Level values must be retrieved from KeyNote/isakmpd.policy instead of

isakmpd.conf.

 The following is a step-by-step description of the modified

process. Refer to Figure 4.5.

Dynamic Parameter Console

KeyNote

Configuration
Process

Security Proposal Ranges
Storage

Modified
(Re)Initialization

Process
Dynamic Parameter

Storage

2

3

4

1a 1b

Figure 4.5

Figure 4.5. Modified (Re)Initialization Process

- 1a – (Re)Initialization triggers the IPsec configuration

process, or

- 1b – Dynamic Parameter console triggers the IPsec

configuration process.

82

- 2 – The Configuration Process retrieves the current values

of the Dynamic Parameters.

- 3 The Modified Configuration Process retrieves valid

security proposal parameters from KeyNote. Note that a

reduced iskampd.conf will still be required to store non-

security related mechanism initialization parameters.

- 4 – The Configuration Process loads valid security

proposals into memory for later use.

3. Modifications Phases

The modification of KeyNote Structure and Query Mechanism will be performed

in the following phases:

 3.1 Determine Security Proposal Range Syntax

In order to retrieve valid security proposal ranges from KeyNote instead of

insakmpd.conf, the proper loading syntax will need to be identified. If the KeyNote

utilizes a different syntax for security proposals, a parsing method will be required to

translate the KeyNote syntax into the syntax required by configuration process.

Initial review indicates that the syntaxes differ and that parsing will be

required. After the valid security proposals are retrieved from KeyNote, they need to be

translated into a form that is expected by the configuration process. Another potential

solution would be to change the expected security proposal range syntax in the

configuration process to one similar to that of KeyNote. (See Future Work Chapter

Seven)

3.2 Develop a Method to Retrieve Current Dynamic Parameter
Values

A method to determine the current dynamic environment variables will be

required prior to retrieving the valid security proposals from KeyNote. The configuration

process should be able to easily access the parameters values for these parameters

3.3 Develop Method to Retrieve Valid Security Proposal Ranges
from KeyNote/isakmpd.policy

Once the values of the dynamic parameters have been determined, a

83

method for retrieving the corresponding security proposals from KeyNote is required.

This method will have to be able to traverse the KeyNote Condition assertion structure

and retrieve the proposal ranges efficiently.

It is important to note that non-security related mechanism initialization

parameters will remain in isakmpd.conf. For further discussion, refer to Future Work

Chapter Seven.

4. Testing

Once all modifications have been performed, a thorough testing phase will be

required. Testing should involve at least two dynamic parameters (ie Network Mode and

Security Level) with at least two ranges for each. The query mechanism should be tested

to ensure that it is consistent and free of logical errors. All errors should be documented

and corrected if possible. Any uncorrected errors should be listed in the Future Work

Chapter.

D. CONCLUSION

The design and method for parameterizing IPsec was outlined and discussed in

this chapter. The design phase identified two specific modifications that will be required:

providing granularity to KeyNote, and parameterizing and improving isakmpd.conf /

isakmpd.policy (KeyNote) security proposal range loading process. Providing

granularity to KeyNote will require an in-depth review of the KeyNote structure

including the Boolean query mechanism. The goal will be to logically insert the dynamic

parameter values according to policy definition, therefore, providing finer granularity to

the Boolean query mechanism. Modifications to the configuration process to enable

security proposal ranges to be retrieved from KeyNote, will require a syntax review of

KeyNote and security proposal ranges expected by the configuration process. There is

potential for a parsing requirement to translate proposals into the appropriate form.

Using the design and process provided, the implementation phase will follow with

specifics on pseudo and source code structures, successes and challenges.

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

V. IMPLEMENTATION

A. INTRODUCTION

The goal of this research is to modify the current implementation of OpenBSD

IPsec to incorporate parameterization of dynamic parameters. After a thorough review of

the current system architecture and an in-depth design phase, I was able to implement the

modifications.

The modifications were performed in two phases: providing granularity to

KeyNote, and stream-lining and incorporating parameterization to the isakmpd.conf /

isakmpd.policy (KeyNote) security proposal set-loading process.

For each phase, I will discuss the implemented design and methodology,

processing description, and pseudo code, including specific algorithms and code

structure, assumptions, challenges, workarounds, and potential problems. Any

implementation issues that could not be solved will be mentioned and further discussed in

the Future Work Chapter Seven.

B. PROVIDING GRANULARITY TO KEYNOTE

1. Parameterization of KeyNote.

Keynote previously used static parameters set by the system administrator,

defining system security information and authorized security associations. However, the

challenge was to enable Keynote to handle dynamic parameters such as security level

and network mode. These parameters would be set via an external module or device.

Incorporating these changes enabled dynamic parameters to control security attribute

setting adjustments in accordance with security policy.

The first step was to integrate dynamic parameter tag and value statements into

the current condition assertion structure of KeyNote/isakmpd.policy. The next step was

to analyze the current KeyNote query mechanism, specifically, the KeyNote query

routine used with static security proposal sets had to be located. Modifications could

then be made to the existing code to incorporate dynamic parameterization.

86

1.1 Inserting Dynamic Parameters into KeyNote’s Condition
Assertion Structure.

Keynote as defined in Chapter III is made up of various sections. Security

attributes reside in the condition section and are expressed in the form of logical

assertions.

The condition section’s syntax is in the form of a logical statement,

similar to a condition that might be found in an “if statement”. The section is usually

broken into sub statements by using &&, ||, and parentheses to construct logical

conditions. For example the following phrase describes two security proposals supporting

telnet services (service_port= 23) using ESP with 3DES for encryption and finger

services (service_port=79) using AH with SHA for authentication:

 (local_filter_port == “23” &&

esp_present == "yes" &&

 esp_enc_alg == "3des") ||

 (local_filter_port == “79” &&

ah_present == "yes" &&

 ah_auth_alg == "sha") -> “true”;

1.2 Inserting Dynamic Parameters into Keynote

Using the above example, the dynamic parameters, network mode and

security level, are added to the condition statement. To properly insert the parameters, it

was essential that the existing logical structure be maintained. This required the

parameters to be added (and properly defined according to policy) to all the existing

conditional expression combinations. Using the previous example with security levels

“high” and “low” and network modes “normal” and “impacted”, the condition phrase is

expanded. Notice that further granularity results in the use of different encryption and

authentication algorithms for each network mode and security level.

(network_mode = “normal” &&

((security_level = “high” &&

 ((local_filter_port == “23” &&

esp_present == "yes" &&

87

esp_enc_alg == "3des") ||

 (local_filter_port == “79” &&

ah_present == "yes" &&

 ah_auth_alg == "sha"))) ||

((security_level = “low” &&

 ((local_filter_port == “23” &&

esp_present == "yes" &&

esp_enc_alg == "des") ||

 (local_filter_port == “79” &&

ah_present == "yes" &&

 ah_auth_alg == "des-mac")))) ||

(network_mode = “impacted” &&

((security_level = “high” &&

 ((local_filter_port == “23” &&

esp_present == "yes" &&

esp_enc_alg == "aes") ||

 (local_filter_port == “79” &&

ah_present == "yes" &&

 ah_auth_alg == "sha"))) ||

((security_level = “low” &&

 ((local_filter_port == “23” &&

esp_present == "yes" &&

esp_enc_alg == "3des") ||

 (local_filter_port == “79” &&

ah_present == "yes" &&

 ah_auth_alg == "sha-md5")))) -> “true”;

 It becomes obvious that adding parameters to the keynote condition

assertion greatly increases the complexity of each expression. In order to implement and

manage a detailed and complex security policy, a policy editor would be required to

translate the assertion’s syntax into a representation that is easier for operators to manage.

Otherwise, the potential for mistakes as a result of the complexity could be very high. See

88

Future Work Chapter Seven for more details on a security policy editor.

Variable precedence should also be considered. Which variable should be

listed first and where is the precedence defined? Fortunately, we have proper logical

expressions and the order and precedence does not matter so long as the combination is

properly constructed and represents all authorized security associations. For example, the

order of nested dynamic parameters, ne twork mode and security level, is not relevant to

the logical outcome of a Boolean query on the condition assertion.

1.3 KeyNote Query Functionality

The next step was to locate the existing KeyNote query calls. By

reviewing the OPenBSD IPsec documentation, I was able to determine the following

KeyNote interface mechanism:

 [ike_quick_mode.c]

- check_policy()

- LK(kn_add_action()) – loads a tag and its value into the

KeyNote query mechanism. If the same tag is loaded more

than once, only the last instance will be used. Can be used

to overwrite preloaded default values. If the process is

successful it returns a ‘1’. Otherwise it returns a ‘0’.

(LK(kn_add_action()), OpenBSD Programmer’s Manual

Pages, 2000)

- LK(kn_do_query()) – performs the Boolean query on

KeyNote on the information loaded into the query

mechanism. If the proposal is accepted, (valid according to

existing assertions in the condition section of KeyNote) a

true value (‘1’) is returned. Otherwise a false value (‘0’) is

returned. LK(kn_do_query()), OpenBSD Programmer’s

Manual Pages, 2000)

89

KeyNote

Current
KeyNote Query

Process

KeyNote
Interface

IKE DaemonIKE Peer
Connection

Peer Proposal

ESP-DES-
SHA-PFS

KeyNote
Query Mechanism

Security
Proposal
Loading

LK(Kn_add_action())
LK(Kn_do_query())

Figure 5.1. Current KeyNote Query Process.

1.4 Dynamic Parameter Input Module

The dynamic input module retrieves the current values of the dynamic

parameters.

1.4.1 Design Approach

To provide for system parameter inputs, I implemented a file

input/output (I/O) approach to incorporate the external parameter input simulation. The

file I/O approach method is utilized throughout the current OpenBSD architecture

allowing different processes to communicate with each other. Basically the file approach

involves an interface component writing data or messages to a file and another

component continually polling the file and responding accordingly. The following is the

file location and an example of the syntax used to write and read the dynamic

parameters:

[/usr/src/sbin/isakmpd/dynamic_parameters]

network_mode = normal

security_level = high

90

 1.4.2 Processing Description

The following describes the algorithm utilized to develop my code:

- Declare file variables used to open and read from the file

- Define and declare a structure that can be used to hold the

dynamic parameters. The structure should have the capability to

grow dynamically as required to hold a variable amount of

parameters.

- Read-in dynamic parameters from a file and load them into the

structure accordingly.

 1.4.3 Pseudo Code

The following code was inserted into ipsec_quick_mode.c:

- Structure : dynamic_packet. Contains the following variables:

- char* title – character string used to hold the dynamic

 parameter title.

- char* symbol – character string used to hold the symbol

 “=” “>” “<” “!=”.

- char* value - character string used to hold the dynamic

 parameter value.

- Function: struct dynamic_packet package_dynamic_parameters(int *

package_counter) - added to ipsec_quick_mode.c to retrieve the

dynamic parameters from a file and load them into an array of

dynamic_packet structure (defined above).

 - Input:

- int * package_counter - pointer to integer variable used for the

number of dynamic parameters added to the structure. Pointer used

to be able to return the value to the calling function.

 - Output:

- struct dynamic_packet - pointer to array of structures.

 - Process:

 - Initialize the pointer to an array size of 10

 - Open file to read in dynamic parameters

91

 - Check for errors in opening the file

-Do-while loop used to read in data until EOF reached or file

reading error occurs.

- Read in from the file expecting the following syntax:

 - title <string> symbol <string> value <string>

- Create exactly enough new structure space for the

dynamic parameters and copy values from temp variables

to the structure variables.

- Increment the package counter array of the structure.

- Check to see if the array of dynamic parameters has

reached max size. If so, resize array accordingly.

 - Close file.

 - Free temporary memory.

 - Return array of structures.

 - Code added to check_policy():

 - Initialize dynamic parameter array structure

- Call package_dynamic_parameters() function to read in the dynamic

parameters and store them in an array of structures.

1.5 Inserting Dynamic Parameters Into The Keynote Query

Functionality

Once dynamic parameters have been retrieved, they can be used in the

KeyNote query process.

 1.5.1 Design Approach

The current implementation of IPSEC in OPENBSD utilizes a

policy_callback structure for loading the IPSec parameters into Keynote for a query.

This enables fewer lines of code. I attempted to utilize this functionality for inserting

security level and network mode. But I was unable to successfully load all dynamic

parameters into KeyNote query mechanism at once. Instead, I proceed by loading each

system variable individually into the KeyNote query structure. This is an area that will

require future work to streamline the process. (See Chapter VII).

92

1.5.2. Processing Description and Pseudo Code

The following is the code added to check_policy():

- Loop through the array of structures.

- Load dynamic parameters individually using

LK(kn_add_action()) & LK(kn_close())

- Check for loading errors.

The following (see figure 5.2) is a step-by-step review of the

modified KeyNote Query Process:

KeyNote

Modified
KeyNote Query

Process

KeyNote
Interface

IKE DaemonIKE Peer
Connection

Peer Proposal

ESP-DES-
SHA-PFS

KeyNote
Query Mechanism

Security
Proposal
Loading

LK(Kn_add_action())
LK(Kn_do_query())

Network_Mode = normal
Security_Level = medium

Dynamic
Parameters

1 2
3

4

5

6

Figure 5.2. Modified KeyNote Query Process.

1 – Peer sends a security proposal to recipient peer during the

security association negotiation phase.

2 – IKE Daemon forwards proposal to KeyNote interface.

3 – KeyNote interface retrieves the current values of the dynamic

parameters.

4 – Mechanism prepares for the security proposal loading.

5 – Dynamic parameter values and security proposal are loaded

into KeyNote query mechanism.

93

6 – Boolean query is performed on KeyNote.

C. REPLACING ISAKMPD.CONF WITH KEYNOTE

To incorporate a complete dynamic functionality into the IPsec mechanism, the

loading process for a valid set of security proposals must be modified to allow for the

injection of the dynamic parameter values. This will ultimately provide further

granularity to the selection of security proposals. To further streamline the management

of the security policy, all security proposals should be derived from

isakmpd.policy/KeyNote. This will require the modification of the existing process of

retrieving the valid set of security proposals from isakmpd.conf.

1. Current isakmpd.conf

isakmpd.conf is used as a configuration file for the isakmpd daemon during

(re)initialization phase of the IPsec mechanism. It provides the initial security

associations and keys used for Phase I of the ISAKMP daemon, and a set of valid

security proposals used in Phase II for IPsec peer negotiation communication.

(ISAKMPD.CONF(5), OpenBSD Programmer’s Manual, October 1998) When the IPsec

mechanism is (re)initialized, isakmpd.conf is read and all the information is loaded into

memory

As previously discussed in Chapter III, IPsec Architecture, isakmpd.conf utilizes

the traditional .ini style file structure and is segregated into sections indicated by “[]”.

Within each section, parameters are defined using the “<tag> = <tag value or range

value>” syntax. Tag values may consist of other section names. This results in a tree-

like structure through the isakmpd.conf file. (ISAKMPD.CONF(5), OpenBSD

Programmer’s Manual, October 1998)

2. Process of Replacing isakmpd.conf with KeyNote

In order to properly modify the current process of loading the valid set of security

proposals to incorporate dynamic parameters and reduce the security policy management

scope to KeyNote, the following must be accomplished. First a method to retrieve the

current values of the dynamic parameters and to inject them into the loading process must

be implemented. Second, the loading process must be modified to allow for the valid set

of security proposals to be retrieved from isakmpd.policy/KeyNote instead of

isakmpd.conf.

94

2.1 Modification of the Valid Set of Security Proposal Loading
Process

 To successfully achieve the goal of modifying the current implementation

of the loading process of the valid set of security proposals, the following steps had to be

accomplished. First, a review of the current methodology and code was required to

determine the appropriate location for the code modification. Second, an understanding

of the isakmpd.conf configuration loading syntax was required so that security proposals

retrieved from KeyNote could be appropriately translated. Third it was necessary to

develop the parsing mechanism to retrieve valid security proposals from KeyNote and

properly translate them, as required, into the form expected by the (re)initialization

process. Last, the dynamic parameter values had to be incorporated into the security

proposal retrieval process, to allow for further granularity in the selection process.

2.1.1. Review of the Current Implementation of the
isakmpd.conf Loading Process

 Currently isakmpd.conf is read during initialization of the IPsec

mechanism and the re- initialization is triggered by a change of state.

 2.1.1.1 Design Approach

Isakmpd.conf contains information on peers (IP addresses,

Net Masks), IKE phase I parameters (IKE security associations: encryption,

authentication and keys), and IPsec phase II security proposals. The IPsec mechanism

reads the isakmpd.conf file from the conf.c file located in the /usr/src/sbin/isakmpd/

directory. The file is read into a string buffer all at once. The buffer is then parsed, start to

finish, using section tags as indicators of section existence. As information is retrieved it

is stored in memory using a structure list/array.

 2.1.1.2 Pseudo Code

 The following is a brief step-by-step description of the

process:

- Function: conf_init() – called to begin the initialize phase of the IPsec

process.

- Storage structure for extracted information from isakmpd.conf is

95

prepared.

- conf_reinit() is called.

 - Function conf_renit() – called to begin the (re)initialization process.

 - file_secrecy () is called.

 - size of file is returned (by reference to int).

 - If isakmpd.conf exists.

- isakmpd.conf is opened. Error checking is performed in

the event of I/O error.

- Entire contents of isakmpd.conf is read into a string

buffer.

 - File is closed.

 - conf_begin() is called

 - if first call, define static transaction number as 1

 and returns.

 - Otherwise increments transaction number

 and returns.

 - conf_parse() called to parse string buffer.

 (See conf_parse() description below).

 - Otherwise – conf_begin() is called.

 - conf_load_defaults() is called. Pre-defined stored

 values of security attributes are loaded into memory as

 required. In the event of an incomplete load or loading error,

 the default values is used.

 - As required, memory is freed.

- Function: conf_parse()

96

- While not at the end of buffer, parses the string buffer one line at

a time.

 - conf_parse_line() is called. (See description below).

- Function: conf_parse_line() – parse string buffer one line at a time

 - Skips comments demoted by #

 - Recognizes section headers.

 - Parses sections by tags and values.

- conf_set() is called to load tags and values into memory

structure.

 (See description below)

- Function: conf-set() – receives transaction number, section name, tag

name, value and other override/default flags. The information is then

stored in a structure for later use.

2.1.2 Syntax Required by the conf.c Loading Process

 Conf.c requires a specific syntax for the set of valid security

proposals. Specifically, it requires that information be broken into sections, tags and tag

values (as found in isakmpd.conf). This information is then loaded into the structure

used to store the security proposal until required. As the information is parsed from the

isakmpd.conf, it is sent to conf_set() function which loads it into memory.

 In order to modify the loading process to allow all security proposal

information to be retrieved from KeyNote/isakmpd.policy, a translation will be required

from KeyNote/isakmpd.policy form to the isakmpd.conf form. Specific syntax

differences between the two forms are as follows:

 - Phase II suite (set of valid security proposals).

 - isakmpd.conf – exists in the following syntax:

 - Tags separated by dashes (-).

<Phase Mode (QM)>-<ESP or AH>-<Encryption or

Authentication used><other security related attributes>

97

- Additional security proposals are added via comma (,).

- KeyNote/isakmpd.policy – does not exist in simple form. Information exists

within the condition assertion. In order to generate the proper syntax it must be

derived from condition assertion.

- Tag and Tag Value

 - isakmpd.conf – are a mixture of uppercase and lower case.

- KeyNote/isakmpd.policy – all tag and tag values exist in

lowercase and tag

values are in quotes (“”). All possible tags and section names must

be accounted for to ensure proper capitalization translation.

 - Assignment symbol

 - isakmpd.conf – utilized single equals sign for assignment (“=”).

- KeyNote/isakmpd.policy – utilizes double equals signs for

assignment (“= =”).

 - File structure.

- isakmpd.conf – utilizes a sequential file structure with section

tags to differentiate between sections.

- KeyNote/isakmpd.policy – utilizes a logical predicate format.

The information is embedded in a series of && and ||. A method of

assertion translation will be required to retrieve the require

information.

 Some of the information found in isakmpd.conf was not security

policy related. It dealt with other connection-oriented specifics. I decided to leave this

information inside isakmpd.conf. In other words, only the security policy information

was removed from iskampd.conf.

2.1.3. Parsing Mechanism to Retrieve Valid Security Proposals
from KeyNote and Properly Translate as Required

 A parsing mechanism is required to retrieve the security proposal

information from the current form of KeyNote’s condition assertion and translate it into

the expected format required by conf.c.

2.1.3.1 Design Approach

98

 The first step in the parsing process was to develop an

algorithm to properly evaluate KeyNote’s condition assertions. A few attempts of direct

parsing involving recursive calls and parenthesis counting proved to be too syntax

dependent and unstable.

The next approach relied on the concurrent development of

a DNF parser that would extract embedded security proposals from an assertion and

reconstruct them in the following format (NPS-CS-02-002, January 2002):

(((<tag> == <tag value>) && (<tag>==<tag value>) && ….)||

(((<tag> == <tag value>) && (<tag>==<tag value>) && ….)||

2.1.3.2 Processing Description

 Given the previous DNF format, the following is the

processing description of the implemented parser:

 - Initialize and define a list of structures (linked list/array).

- Read in the DNF security proposal file.

 - Parse the file according to security proposals.

- Provide a new structure to store information for each security

proposal.

 - Translate the stored information into the expected isakmpd.conf syntax.

 - Load memory with the set of valid security proposals.

2.1.3.3 Pseudo Code

 Below is the detailed description of the parsing

implementation. The function call to the KeyNote parsing (conf_kn_parse()) was

inserted in the conf_reinit() in conf.c, after the load_default() function call. A

description of the implementation follows:

- Suite_Struct was used to hold the extracted security proposal

information retrieved from the DNF security proposal. The structure

contained all possible entries (within the scope of the research. Note that

potentially, there could be other undefined parameters. This is discussed

further in the Future Work Chapter Seven). Memory for each char string

was dynamically created for memory conservation. In other words

memory was allocated as needed throughout the parsing routine.

99

struct suite_struct {

 char * suite_name;

 char * suite_protocol;

 char * suite_transform;

 char * protocol_id;

 char * transform_id;

 char * encapsulation_mode;

 char * group_description;

 char * authentication_algorithm;

 char * life;

 char * life_type;

 char * life_duration;

 char * network_mode;

 char * security_level;

 char * esp;

 char * ah;

 char * esp_enc_alg;

 char * esp_auth_alg;

 char * ah_auth_alg;

 char * pfs;

 char * key_length;

};

- Function: conf_kn_parse() – function called to activate the DNF

security proposal parsing mechanism.

 - input: int trans – used for the transaction number for sequential

 processing.

 - output: void.

 - process:

- Array of structures initialized for two security proposals.

The number two was chosen because my testing example

consist of two security proposals.

100

 - DNF security proposal file is opened

- Error checking is performed. If the error occurs,

exit routine and return to conf_reinit().

- Utilize technique taken from file_secrecy () function

stat (<file name>, &<size variable>) to determine size of

file to be read. This enabled a dynamic approach to

allocating only enough memory as needed.

- Read in entire DNF file into string buffer.

- Close the file.

- While not at end of string buffer:

-Search for the first security proposal expression.

The search is performed by searching for the first

occurrence of “(“. An assumption is made that for

every variation of DNF security proposal possible,

they will all begin with “(“.

 - DNF_parse() function is called.

 - if 1 (true) is returned then a valid security

 proposal was found and the counter is

incremented.

 - Check to see if any valid security proposals were found.

- If so, call send_to_conf_set() function to load

valid security proposals into memory.

 - Free temporary memory used.

- Function: send_to_conf_set(int trans, char * suite_title, char * suite,

struct suite_struct * suite_profile, int struct_size) – this functions sends

parsed information to conf_set in the correct syntax.

 - Input:

 - int trans – transaction number.

- char * suite_title – holds title for tag defined in previous

function.

- char * suite – holds set of security proposals

101

- struct suite_struct * suite_profile – points to the list/array

 of suite structures.

- int struct_size – holds the size of the list.

 - Output: None.

 - Process:

- Performs initial conf_set call for the General section

including the set of security proposals (suite).

- Loops through the list/array of structures and executes

conf_set in accordance with the information loaded in the

structure.

- No NULL check is performed. It is assumed that a

 NULL value will not have a negative effect on the

 loading process and that the loaded default will be

used instead.

- The following is the standard suite structure is

expected by conf_set():

- [General] section with a Default-Phase-2-

Suite tag and value (set of security

proposals). Sent only once.

 - [<suite name>] section with suite protocol

 per structure.

- [<suite protocol>] section with protocol id

per structure.

- [<suite transform>] section with

- transform id

- encapsulation mode

- group description

- authentication algorithm

- lifetime

- per structure.

- [<suite lifetime definition>] section with

102

 - lifetime type

 - lifetime duration

 - per structure.

- Function: struct suite_struct* struct_initialization (struct

suite_struct * suite_profile) – used to initialize each suite structure.

- Input: - struct suite_struct * suite_profile – holds the pointer to

suite structure.

 - Output: - returns the newly initialized structure.

 - Process:

- In an effort to minimize wasted memory, all elements of

the structure are initialized to NULL.

- Note: That in order to facilitate dynamic memory use, pointer to

pointer coding syntax at times was required. By having a pointer to

a pointer, memory created in a function will still be resident/within

scope after returning from the function.

 - Function: int DNF_parse(char **suite, char *buff_temp, int

* buff_temp_counter, int szkn, struct suite_struct *suite_profile,

struct dynamic_packet * package, int package_size) – This function

parses each security proposal found.

 - Input:

 - Note: That in order to facilitate dynamic memory use,

 pointer to pointer coding syntax at times was required. By

 having a pointer to a pointer, memory created in a function

 will still be resident/within scope after returning from the

 function.

- char **suite – holds the set of security proposals. Pointer

to a pointer used to for dynamic memory creation.

- char *buff_temp – string buffer holding the DNF file.

- int* buff_temp_counter – location of parsing index.

103

Pointer to integer is used to allow for pass by reference.

- int szkn – size of file/string buffer.

- struct suite_struct *suite_profile – pointer to suite

structure.

 - Outputs:

 - integer

– returns 1 (false) if parse routine successful.

 - returns 0 (false) otherwise.

 - Process:

 - Note: The methodology used in the following parsing

 function is as follows. The parsing is performed on per

 character basis. If a character matches the first character of

 an expected key word, one of two functions are called:

 parse_ipsec_para_tag() or parse_ipsec_parameter().

 Parse_ipsec_para_tag() (explained later in detail) is used

for specific tags utilizing Boolean tag values, usually “yes”

or “no.”

Parse_ipsec_parameter() (explained later in detail) is used

for normal tag and tag value expressions.

 - Initialize suite structure;

 - While loop with Boolean flag

- The following parsing is performed on a character

by character basis. If the first character matches and

a further string comparison will not cause a buffer-

overflow, then a follow-up routine is called to

check for the full comparison. If a comparison

match is found, parsing continues in the called

function. If not, function returns and parsing in local

function continues until Boolean flag is set.

- Check for ESP. Call parse_ipsec_para_tag()

- If ESP is found then dynamic memory is

104

created in the suite structure for the string

IPSEC_ESP.

- Check for ESP encryption algorithm by calling

parse_ipsec_parameter() .

- If ESP encryption algorithm is found then

dynamic memory is created in the suite

structure for ESP encryption algorithm.

- Check for ESP authentication algorithm by calling

parse_ipsec_parameter().

- If ESP authentication algorithm is found

then dynamic memory is created in the suite

structure for the ESP authentication

algorithm.

- Check for AH by calling parse_ipsec_para_tag().

- If AH is found then dynamic memory is

created in the suite structure for the string

IPSEC_AH.

- Check for PFS by calling

parse_ipsec_para_tag().

- If PFS is found then dynamic memory is

created in the suite structure for the string

yes (as found in the Keynote).

- Check AH for authentication algorithm. Call

parse_ipsec_parameter().

- If AH authentication algorithm is found

then dynamic memory is created in the suite

structure for the algorithm. Note that HMAC

is added to the end of the authentication

algorithm. The end result is:

HMAC_<Authentication Algorithm> (ie

HMAC_SHA). This is done to conform to

105

the iskampd.conf syntax.

- Check for ESP Group Description by calling

parse_ipsec_parameter().

- If ESP Group Description is found then

dynamic memory is created in the suite

structure for the KeyNote version of the

Group Description. The function

group_description_translation() is then

called to convert the string into the

isakmpd.conf form required by the

conf_set().

- Check for AH Group Description by calling

parse_ipsec_parameter().

- If AH Group Description is found then

dynamic memory is created in the suite

structure for the KeyNote version of the

Group Description. The function

group_description_translation() is then

called to convert the string into the

isakmpd.conf form required by the

conf_set().

- Check for ESP Encapsulation by calling

parse_ipsec_parameter().

- If ESP Encapsulation is found then

dynamic memory is created in the suite

structure for the encapsulation mode.

- Check for AH Encapsulation by calling

parse_ipsec_parameter().

- If AH Encapsulation is found then

dynamic memory is created in the suite

106

structure for the encapsulation mode.

- Check for ESP life seconds by calling

parse_ipsec_parameter().

- If ESP life seconds is found then dynamic

memory is created in the suite structure and

life_seconds_translation() is called to

convert the string into the iskampd.conf

format. The converted string is then copied

into the newly created space in the suite

structure.

- Check for AH life seconds by calling

parse_ipsec_parameter().

- If AH life seconds is found then dynamic

memory is created in the suite structure and

life_seconds_translation() is called to

convert the string into the iskampd.conf

format. The converted string is then copied

into the newly created space in the suite

structure.

- Check for ESP life kilobytes by calling

parse_ipsec_parameter().

- If ESP life kilobytes is found then dynamic

memory is created in the suite structure and

life_kilobytes_translation() is called to

convert the string into the iskampd.conf

format. The converted string is then copied

into the newly created space in the suite

structure.

- Check for AH life kilobytes by calling

parse_ipsec_parameter().

- If AH life kilobytes is found then dynamic

107

memory is created in the suite structure and

life_kilobytes_translation() is called to

convert the string into the iskampd.conf

format. The converted string is then copied

into the newly created space in the suite

structure.

- Check for the end of a DNF suite set by checking

for “|”.

- If found then the Boolean flag is set to exit

while loop.

- add_para_values() is called to properly

configure the suite.

- Check for end of file. If not found advance

file character index to the next character.

 - Return int 1 (true) to indicate successful parsing

 iteration.

 - Function: void life_kilobytes_translation(char ** life, char

**life_type, char **life_duration) – this function is used to convert

lifetime in kilobytes from the KeyNote/isakmpd.policy format to the

isakmpd.conf format.

 - Inputs:

- Note: That in order to facilitate dynamic memory use,

 pointer to pointer coding syntax at times was required. By

 having a pointer to a pointer, memory created in a function

 will still be resident/within scope after returning from the

 function.

- char ** life – holds the initial life time input. Pointer to a

pointer used for dynamic memory allocation.

- char ** life_type – holds the life time type string

KILOBYTES. Pointer to a pointer used for dynamic

memory allocation.

108

- char ** life_duration – holds the life time duration string .

Pointer to a pointer used for dynamic memory allocation.

 - Outputs:

- char ** life – used to return life time. Pointer to a pointer

used for dynamic memory allocation.

- char ** life_type – used to return life time type string

KILOBYTES. Pointer to a pointer used for dynamic

memory allocation.

- char ** life_duration – used to return the life time

duration string . Pointer to a pointer used for dynamic

memory allocation.

- Process:

- This function takes the input value of life and compares it

with predefined life constants. If the constant is found, the

appropriate information is stored in life_type and

life_duration. All memory is dynamically created in this

function.

- Check if life equals 1000. If so:

- Free memory used previously by life and

dynamically create memory for “LIFE_1000_KB.”

- Dynamically create memory for “KILOBYTES”.

- Dynamically create memory for “1000,768:1356”.

 - Check if life equals 32000. If so:

- Free memory used previously by life and

dynamically create memory for “LIFE_32_MB.”

- Dynamically create memory for “KILOBYTES”.

- Dynamically create memory for

“32768,16384:65536”.

- Check if life equals 45000000. If so:

- Free memory used previously by life and

dynamically create memory for “LIFE_4.5_GB.”

109

- Dynamically create memory for “KILOBYTES”

- Dynamically create memory for

“4608000,4096000:8192000”.

- If no match is found, the default load of 1000 is used.

- Function: void life_seconds_translation(char ** life, char **life_type,

char **life_duration) – this function is used to convert lifetime in

seconds from the KeyNote/isakmpd.policy syntax to the isakmpd.conf

syntax.

 - Inputs:

- Note: That in order to facilitate dynamic memory use,

 pointer to pointer coding syntax at times was required. By

 having a pointer to a pointer, memory created in a function

 will still be resident/within scope after returning from the

 function.

- char ** life – holds the initial life time input. Pointer to a

pointer used for dynamic memory allocation.

- char ** life_type – holds the life time type string

SECONDS. Pointer to a pointer used for dynamic memory

allocation.

- char ** life_duration – holds the life time duration string .

Pointer to a pointer used for dynamic memory allocation.

 - Outputs:

- char ** life – used to return life time. Pointer to a pointer

used for dynamic memory allocation.

- char ** life_type – used to return life time type string

SECONDS. Pointer to a pointer used for dynamic memory

allocation.

- char ** life_duration – used to return the life time

duration string . Pointer to a pointer used for dynamic

memory allocation.

- Process:

110

- This function takes the input value of life and compares it

with predefined life constants. If the constant is found, the

appropriate information is stored in life_type and

life_duration. All memory is dynamically created in this

function.

- Check if life equals 600. If so:

- Free memory used previously by life and

dynamically create memory for “LIFE_600_SECS.”

- Dynamically create memory for “SECONDS”.

- Dynamically create memory for “600,450:720”.

 - Check if life equals 3600. If so:

- Free memory used previously by life and

dynamically create memory for

“LIFE_3600_SECS.”

- Dynamically create memory for “SECONDS”.

- Dynamically create memory to for

“3600,1800:7200”.

- If no match is found, the default value of 3600 is

used.

- Function: void group_description_translation(char **

group_description) – this function is used to convert group description

from the KeyNote/isakmpd.policy syntax to the isakmpd.conf syntax.

 - Inputs:

- Note: That in order to facilitate dynamic memory use,

 pointer to pointer coding syntax at times was required. By

 having a pointer to a pointer, memory created in a function

 will still be resident/within scope after returning from the

 function.

- char ** group_description– holds the initial group

description variable. Pointer to a pointer used for dynamic

memory allocation.

111

 - Outputs:

- char ** group_description – used to return translated

group_description. Pointer to a pointer used for dynamic

memory allocation.

- Process:

- This function takes the input value of the group

description and compares it with predefined constants. If

the constant is found, the appropriate information is stored

in group_description. All memory is dynamically created in

this function.

- Check if group_description equals 1. If so:

- Free memory used previously by

group_description and dynamically create memory

for “MOPD_768”

- Check if group_description equals 2. If so:

- Free memory used previously by life and

dynamically create memory for “MODP_1024”

- Check if group_description equals 3. If so:

- Free memory used previously by life and

dynamically create memory for “MODP_155”

- Check if group_description equals 4. If so:

- Free memory used previously by life and

dynamically create memory for “MODP_185”

- Check if group_description equals 5. If so:

- Free memory used previously by life and

dynamically create memory for “MODP_1536”

- If no match is found, the default value of

group_description 1 is used.

- Function: void add_para_values(char ** suite, struct suite_struct **

suite_profile)- this function generates the security proposal format

required by the configuration process.

112

- Note: That in order to facilitate dynamic memory use,

 pointer to pointer coding syntax at times was required. By

having a pointer to a pointer, memory created in a function

 will still be resident/within scope after returning from the

 function.

 - Inputs:

- char ** suite - holds the set of security proposals.

Pointer to a pointer used to for dynamic memory creation.

- struct suite_struct **suite_profile – pointer to suite

structure.

 - Outputs:

- char ** suite – returns the modified set of security

proposals. Pointer to a pointer used to for dynamic memory

creation.

- struct suite_struct **suite_profile – pointer to suite

structure used to return the modified suite_profile structure.

 - Process:

- This function uses the parsed data and generates the

suite/set of security proposals in the required isakmpd.conf

syntax.

- Dynamically creates memory for suite_name in

suite_profile structure.

- Checks if suite is large enough for further modification. If

not, memory is dynamically reallocated for the suite.

- If suite has not been allocated memory, default size of

memory is allocated.

- Performs basic error testing. If ESP and AH were not

loaded during parsing routine, then checks to see what

types of algorithms are used to determine if security

proposal uses AH or ESP.

- Check if suite structure parameters are null, if not, use the

113

value to construct the suite list.

- Function: char * convert_to_uppercase(char * lowercase_string) –

converts a lower case string to an upper case string and returns the string.

 - Input:

 - char * lowercase – lower case string.

 - Output:

 - char * - returns uppercase string.

 - Process:

- Loops through the input string capitalizing each character

with the toupper function to convert the string to uppercase.

- Function: void parse_ipsec_parameter(char *buff_temp, int *

buff_temp_counter, char * sys_para_name, char ** temp_hold, int *

success) – verifies that the tag is the expected tag and then parses the tag

and the tag value, storing information in input suite structure char string.

 - Inputs:

- char *buff_temp – pointer to the file being parsed.

- int *buff_temp_counter – pointer to index of character in

file being parsed.

- char * sys_para_name – pointer to the expected parameter

tag name

- char ** temp_hold – pointer to a pointer (used for the

purpose of dynamic memory allocation) of char string in

suite structure.

- int *success – pointer to an integer used for the success

flag.

 -Outputs:

- int *buff_temp_counter – pointer to index of character in

file being parsed is returned via pointer reference. Pointer

may be advance in function.

- char * temp_hold - pointer to a pointer of a character

string (used for the purpose of dynamic memory allocation)

114

in the suite structure returned via pointer reference.

- int *success – pointer to an integer used to hold success

flag returned via reference.

 - Process:

- Check to see if expected parameter string matches target

string in string buffer being parsed. If so :

- Advance index pointer in buffer to tag value –

determined by “” in KeyNote/isakmpd.policy

syntax.

- Create dynamic memory in input suite structure

string for the tag value from buffer.

- Copy tag value to input suite structure string.

 - Set success flag to 1 (true).

- Convert tag value to upper case using

convert_to_uppercase() function.

- If match not found, set success flag to 0 (false) and exit.

- Function: void parse_ipsec_para_tag(char *buff_temp, int *

buff_temp_counter, char * sys_para_name, char ** temp_hold, int

sys_para_name_reduced, int * success) - verifies that the tag is the

expected tag and that tag value contains “yes”. If so, parses tag and stores

its value in suite structure char string.

 - Inputs:

- char *buff_temp – pointer to the file being parsed.

- int *buff_temp_counter – pointer to index of character in

file being parsed.

- char * sys_para_name – pointer to the expected parameter

tag name

- char ** temp_hold – pointer to a pointer (used for the

purpose of dynamic memory allocation) of char string in

suite structure.

- int sys_para_name_reduced – integer that holds the string

115

size of the tag. Either 2 or 3 used for AH, ESP or PFS tags.

- int *success – pointer to an integer used for the success

flag.

 -Outputs:

- int *buff_temp_counter – pointer to the index of character

in file being parsed is returned via pointer reference.

Pointer may be advanced in the function.

- char * temp_hold - pointer to a pointer of a character

string (used for the purpose of dynamic memory allocation)

in the suite structure returned via pointer reference.

- int *success – pointer to an integer used for the success

flag returned via reference.

 - Process:

- Check to see if expected parameter string matches target

string in the string buffer being parsed. If so :

- Advance index pointer in buffer to tag value –

determined by “” in KeyNote/isakmpd.policy

syntax.

- Check to see if the tag value is “yes”. If so:

- Use sys_para_name_reduced to determine

the appropriate size of the tag for dynamic

memory creation and coping purposes.

- Create dynamic memory for input suite

structure string to ho ld the tag from the

buffer (i.e. AH, ESP or PFS). Note: the

difference between this function and the

previous one, is that the tag value is copied

as opposed to the tag.

- Copy tag into input suite structure string.

 - Set success flag to 1 (true).

- Convert tag value to upper case using

116

convert_to_uppercase() function.

- If match not found, set success flag to 0 (false) and exit.

 Figure 5.3 provides a diagram of the process.

Logical Flow of Functions
for Parsing KeyNote into

isakmpd.conf Syntax.

Conf.c

Conf_kn_parse()

KeyNote
DNF

DNF_parse()

Struct_
initalization()

Parse_ipsec_
parameter()

Parse_ipsec_
Para_tag()

Add_para_values()

Life_kilobytes_
Translation()

Life_seconds_
Translation()

Group_description_
Translation()

Send_to_conf_set()

Convert_to_
uppercase()

Load_defaultt()

Figure 5.3. Logical Flow of Functions for Parsing KeyNote into isakmpd.conf Syntax.

2.2 Incorporating the Dynamic Parameters into the Security
Proposal Loading Process

 The last step required in the modification of the security proposal loading

process is incorporating dynamic parameters. One mechanism is required to retrieve the

current value of the dynamic parameters. Another mechanism will be required to utilize

these values in the security proposal parsing process described earlier.

2.2.1 Design for Retrieving Value of Dynamic Parameters

 Reusing the module implemented for the retrieval of the dynamic

parameters in above section B.1.3, the process retrieves the current value of the dynamic

117

parameters from a file. An important assumption is made here: when the values of the

dynamic parameters change, a process will initiate a reconfiguration to cause the

triggering of the security proposal loading process (in order for the security proposal to

properly reflect the new dynamic parameter values).

2.2.2 Design for Mechanism for Incorporating Dynamic
Parameter Values into the Security Proposal Parsing
Process

 A mechanism is required to incorporate the values of the dynamic

parameters during the security proposal parsing process. For efficiency the mechanism

should first scan the DNF security assertion for valid dynamic parameters. If valid values

exist then parsing continues. If not then there are no changes relevant to the query and the

process skips to the next DNF security assertions.

2.2.2.1 Processing Description

The following is the processing description for the

mechanism:

 - Load current dynamic parameter values into a memory structure

- Prior to parsing each DNF security proposal assertion, perform a

preliminary scan to check for matching dynamic parameter values.

If a match exists, continue with the parsing process. If not, advance

to the next DNF assertion and return to primary parsing loop to

process next available DNF security proposal assertion.

 2.2.2.2 Pseudo Code

 The loading of dynamic parameter values into a memory

structure utilizes the same routine discussed in section B1.3 in this chapter. The following

functions are used to scan DNF security proposals for valid dynamic parameters.

- Function: int dynamic_package_verification(char * buff_temp, int

*buff_temp_counter, int buff_temp_end, struct dynamic_packet *

package, int package_size, int szkn) – used to check dynamic parameters

of DNF security proposal assertions.

118

 - Input:

- char * buff_temp – character string/buffer used to hold

the isakmpd.conf/KeyNote file being parsed.

- int *buff_temp_counter – index used for parsing the

buff_temp.

- int buff_temp_end – index to last character of buffer used

to check for end-of- file (EOF) condition.

- struct dynamic_packet * package – structure that holds

current value of the dynamic parameters.

- int package_size – size of array of dynamic_packet

structure.

 - int szkn – size of KeyNote file.

 - Output:

- int – used as a Boolean flag to indicate if DNF security

proposal assertion dynamic parameters match. Return 0

(false). Return 1 (true).

 - Process:

 - Loop through the array of the dynamic_packet structure:

- Set temp index pointer to the beginning of the DNF

security proposal assertion.

 - Loop through DNF security proposal assertion:

- Check for the first character match of dynamic

parameter tag. Avoid checking beyond the buffer by

using szkn to check for buffer size limit.

- Call verify_parameter() function to check rest of

dynamic_parameter tag and tag value. Returns a

flag 0-dynamic parameter does not ma tch, 1-

119

dynamic parameter matches , 2- rest of tag does not

match dynamic parameter tag.

- If 0 (dynamic parameter does not match), then

advance to the next DNF security proposal assertion

by calling advance_to_end_DNF() function.

Return to calling function.

- If 1 (dynamic parameter matches) then set loop

flag to exit DNF security proposal assertion loop

and check for other dynamic parameter value

matches.

- If 2 (rest of tag does not match dynamic

parameter tag) then continue searching through

DNF security proposal assertion loop.

- Check for end of DNF security proposal assertion

(check for “|”). If found, set exit flag from loop

searching through DNF security proposal assertion.

- Check for end-of- file (EOF) using szkn parameter.

If found, set exit flag from loop searching through

DNF security proposal assertion.

- Advance buff_temp index counter.

- Check to ensure that all dynamic parameter matches were

found by comparing match counter to number of dynamic

parameters in the array structure.

- If match counter and array size equal, return 1

(true) to calling function.

- Else advance buffer index to the next DNF

security proposal and return 0 (false).

- Function: verify_parameter(char *buff_temp, int

120

*buff_temp_counter, char * sys_para_name, char *

sys_para_value,int buff_temp_end) – checks input dynamic parameter

tag value and if valid, compares tag value with given value. Returns three

possible flag values.

 - Input:

 - char *buff_temp – string buffer used for KeyNote file.

- int *buff_temp_counter - index of pointer in buff_temp

string buffer.

 - char * sys_para_name – Dynamic parameter tag

 - char * sys_para_value – Dynamic parameter tag value

- int buff_temp_end – index of end-of-file (EOF) in

buff_temp.

 - Output:

 - int – flag with the following three values:

 - 0 (dynamic parameter tag value does not match)

 - 1 (dynamic parameter tag value matches)

 - 2 (dynamic tag does not match).

 - Process:

 - Compare dynamic parameter tags:

- If match found :

-Advance index pointer to the start of

the tag value for further comparison.

- Compare dynamic parameter tag

values:

- If match found, set return

flag to 1.

121

 - Else (match not found) set

 return flag to 0.

 - Else set return flag to 2.

 - Return flag.

- Function: DNF_parse() – previously described above in section

B.2.2.3.3, required additional modifications to fully incorporate the

dynamic parameter functionality. The modifications are listed below:

 - Prior to perform parsing, a call to

 dynamic_package_verification() function is made

 to determine if DNF security proposal assertion is

 valid in accordance to current dynamic parameters.

 If so parsing process continues. If not function

 skips parsing process and returns to calling

function (which will advance to the next DNF security

proposal assertion if EOF is not reached).

 Figure 5.4 provides a diagram of the process.

122

Logical Flow of Security Proposal
Parsing and Loading Process with

a Dynamic Parameter
Interface.

Conf.c

Conf_kn_parse()

KeyNote
DNF

DNF_parse()

Struct_
initalization()

Parse_ ipsec_
parameter()

Parse_ ipsec_
Para_tag()

Add_para_values()

Lie_kilobytes_
Translation()

Life_seconds_
Translation()

Group_description_
Translation()

Send_to_conf_set()

Test……..t()

Convert_to_
uppercase()

Load_defaultt ()

Test_for_
double()

Package_dynamic_
Parameters()

dynamic_package
verification()

verify_parameter()

Figure 5.4. Logical Flow of Security Proposal Parsing and Loading Process with the

Added Dynamic Parameter Interface.

2.3 Additional Modifications to Further Fine -tune Security
Proposal Loading Process

 To ensure the security proposal loading process runs smoothly, further

fine tuning mechanisms are required. First a default value loading mechanism must be

inserted to ensure that proposals that have incomplete fields are filled with default values.

Second, the possibility of having more than one identical security proposal must be

appropriately handled. Duplicates may result from the added granularity in the security

proposal definitions caused by the inclusion of dynamic parameter field attributes into

KeyNote.

2.3.1. Default Value Loading Mechanism

 In the event of an incomplete security proposal, default values are

required to fill the holes in the proposal. This will help to avoid a runtime system crash

and/or unstable secure communications. To accomplish this, a default policy must be

determined to handle all cases. The mechanism can then either utilize the whole default

policy (in cases where insufficient policy is successfully parsed) or portions of the default

policy (in cases where security policy is only partially defined).

123

 The following security policy was determined to be default policy. Note: the

default setting is set to the least upper bound of all possible proposals providing the

highest level of security.

 - ESP protected IPsec protocol

 - Encryption algorithm: AES

 - Authentication Algorithm: SHA

 - Utilizing perfect Forward Security

 - Transportation Mode: Tunnel

 - Life: 3600 seconds

 - Group description: MODP_1024

 2.3.1.1 Processing Description

 The following is the processing descriptionused to perform

default loading:

- After all parsing has been performed, check to see if any valid

security proposals were created:

 - If so call send_to_conf_set().

- Perform a validity check to ensure that enough security

parameters exist for the security proposal to be valid:

- If enough parameters exist, continue loading parameters with

conf_set().

 - If not, abort and call load_defaul_sa() to load

 default security proposal.

- While sending the security proposal parameters to conf_set(),

check for empty required parameters. If any are found, fill them

with the appropriate values from the default security proposal

structure.

 - Else load full default security proposal structure.

2.3.1.2 Pseudo Code

The following is a description of the pseudo code:

 - Function: struct suite_struct * initialize_default_suite_profile(struct

 suite_struct *temp_ss) – initialize a default suite structure.

124

 - Input:

 - struct suite_struct *temp_ss – pointer to structure to be

 initialized and loaded with default parameters.

 - Output:

 - struct suite_struct * - pointer to structure to be returned.

 - Process:

 - create just enough memory as required and copy default

 string values into structure character strings.

 - return the pointer to the structure.

- Function: void load_default_sa(int trans,char * section, char *

title,struct suite_struct* default_suite_profile) – loads default security

proposal into

 conf_set().

 - Input:

 - int trans – transaction number required for conf_set()

- char * section – character string defined in calling

function

 - char * title – character string defined in calling function

 - struct suite_struct* default_suite_profile – default

 suite structure for the default security proposal

 parameters.

 - Output:

 - void

 - Process:

 - Call conf_set() using the default values from the default

suite structure to load default security proposal into

memory.

 - Modification to Function: send_to_conf_set(….,struct suite_struct *

default_suite_profile) – modifications to send_to_conf previously

described will be required to handle default loading of parameters for

incomplete security

125

 proposals.

 - Input:

 - struct suite_struct * default_suite_profile – structure

 for default security proposal.

 - Output: void.

 - Process:

 - Test if no suites were defined. If so, abort and call

 load_default_sa()

- Call test_suite_structure() to verify that parsed security

proposal(s) contains sufficient parameters to be used:

 - If 0 (false) is returned, abort and call load_default_sa()

- If 1 (true) is returned, continue.

 - Loop through array of security proposals:

 - Verify that each required parameter has a value.

 - If not, use the default structure to load appropriate

 default value.

 - If so, continue.

- Call conf_set() as needed to load security

proposal.

- Function: int test_suite_structure(struct suite_struct *

suite_profile,int struct_size) – used to verify that suite structures contain

sufficient parameter to be valid.

 - Input:

 - struct suite_struct * suite_profile – pointer to list of

 security proposal structures.

 - int struct_size – size of array list

 - Output:

 - int – Boolean return flag: 0 (false), 1 (true).

 - Process:

 - Loop through the list of security proposal structures.

 - Test if suite_name is NULL. If so, abort and return false.

126

 - Test if protocol_id is NULL. If so, abort and return false.

 - Test if transform_id is NULL. If so, abort and return false.

 - Return true.

 Figure 5.6 provides a diagram of the process.

Security Proposal
Default Loading

Process

Conf.c Conf_kn_parse()

Send_to_conf_set()

Initialize_default
Suite_profile()

Test_suite_structure()Load_default_sa()

Figure 5.6. Security Proposal Default Loading Process.

2.3.2 Mechanism To Handle Duplicate Security Proposals

 With the incorporation of dynamic parameters into the KeyNote

structure, the possibility of duplicate security proposals being generated exists. To

maintain an efficient security process, a mechanism must be implemented that ensures

that duplicate security proposals are not generated. To efficiently manage this problem,

the mechanism must be inserted into the parsing process so that it will skip ahead to the

next DNF security proposal when a duplicate security proposal is recognized.

2.3.2.1. Processing Description

 Once valid security proposals have been initially parsed

from KeyNote, a function is required to eliminate duplicate security proposals.

 The following is the processing description of the

127

procedure used to check for and handle duplicate security proposals:

- The process will utilize a list of parsed security proposals. As

new security proposals are added, they must be compared to the

current members of the list to check for duplication.

- In order to check for duplicates, the parsed security parameters

must be checked. The following are the security parameters used

for the proof of concept in this research:

 - ESP encryption algorithm

 - ESP authentication algorithm

 - AH authentication algorithm

 - encapsulation mode

 - group description

 - life time

 - Perfect Forward Security

 - Key Length

2.3.2.2. Pseudo Code

The following is a description of the pseudo code:

- Function: int duplicate_sa (struct suite_struct * suite_list, int

suite_count,struct suite_struct *suite_profile) – compares the security

proposals list with new security proposal for duplicates.

 - Input:

- struct suite_struct * suite_list – pointer to a security

proposal list/array.

- int suite_count – number of security proposal in the

array.

- struct suite_struct *suite_profile – pointer to the new

security proposal.

 - Output:

- Int – used as Boolean flag. Returns 1 (true) if new

security proposal is a duplicate. Returns false if new

128

security proposal is not a duplicate.

 - Process:

- For loop is used to traverse the array of security

proposals.

- Each member of the array is compared with the new

security proposal. The elements of the security proposal are

compared via strcmp() utilizing the embedded if/else

statements. For each strcmp test, a NULL test is performed

first in the if statement to avoid a potential run-time error

(caused by strcmp(NULL)). If NULL is found, the rest of

the strcmp test is by-passed and the next if statement is

executed. This continues until all security proposal

conditions are checked and found to be identical or not. If

the process successful passes all if nested statements, true

(1) is returned to the calling function indicating a the new

security proposal is a duplicate. Otherwise, the function

continues checking all security proposals in the array. If

the complete array has been checked without finding a

duplicate, false (0) is returned to the calling function. The

elements of the security proposal checked are:

- AH Authentication algorithm (ah_auth_alg).

 - Encryption algorithm (esp_enc_alg).

- ESP Authentication algorithm (esp_auth_alg).

- Encapsulation mode (encapsulation_mode).

- Group description (group_desription).

 - Life time title (life).

 - Life time type (life_type).

 - Life time duration (life_duration).

 - Key length (key_length).

 - Figure 5.7 provides a diagram of the process.

129

Security Proposal
Duplicate Checking

Process

Conf_kn_parse()

DNF_parse()

Add_para_values()

Duplicate_sa()

Figure 5.7. Security Proposal Duplicate Checking Process.

D. CONCLUSION

This chapter described the implementation of dynamic parameterization of

IPsec, and includes the methodology, processing description, and pseudo code

summaries for each component. The goal was to modify the current OpenBSD

implementation of IPsec to incorporate additional fields representing dynamic

parameters. The modification was performed in two phases: the first provided

granularity to KeyNote/isakmpd.policy, and the second streamlined and incorporated

parameterization into the isakmpd.conf-KeyNote security proposal set loading process.

Additional error-checking functionality was added for security proposal duplicates, and

for incomplete security proposals. These included the capability of loading default fields

and proposals as required.

To demonstrate the work represented in this chapter, an interface was required.

In the following chapter I will discuss the design and implementation of a Java graphical

user interface that enables users to run IPsec while invoking dynamic parameters to

adjust security parameters in accordance with the security policy.

130

THIS PAGE INTENTIONALLY LEFT BLANK

131

VI. GRAPHICAL USER INTERFACE (GUI) DEMOSTRATION

A. INTRODUCTION

The current implementation of OpenBSD IPsec requires a complex sequence of

commands via command-line prompts to establish a secure connection between peers. In

the event of a dynamic parameter change requiring the reconfiguration of IPsec, a series

of commands and scripts are used. This procedure is very time intensive and requires

considerable operating system and environmental knowledge. Also, the process of

demonstrating the results of this thesis was challenging without an available graphical

user interface (GUI) representation. As a result, a more user- friendly graphical oriented

interface was designed and developed to allow users, with limited knowledge of

OpenBSD operating environment, to operate and observe the security mechanism and its

dynamic parameterization.

This chapter will review the existing command line environment and will describe

the Graphical User Interface (GUI) to simplify IPsec control and use.

B. COMMAND-LINE ENVIRONMENT

The OpenBSD operating environment, true to its UNIX roots, is controlled via the

command-line for most operations. The typical commands used for operating the IPsec

mechanism are explained below.

The following sections are referenced from

 (http://www.openbsd.org/faq/faq13.html).

1. IPsec System Flush

Prior to initializing and starting the IPsec process, all previous security

associations and security rules need to be removed from all databases and cached

memory. This will allow new security associations to be generated. This clean-up and

refresh process is called a “flush”. The syntax for the command is : ipsecadm flush.

2. Setting Up and Mounting the Security Policy Database

Prior to starting the IPsec process, the Security Policy Database (SPD) must be

populated with a cached version of the peer connection and security attributes. Otherwise

the IPsec will not properly secure network communications in accordance with the

132

defined security policy. In order to do so, two tasks must be performed: setup IPsec flows

and mount the security policy database in the kernel (SPD). Note, that the SPD is updated

periodically, with new security association (SA) security parameter index (SPI)

references after successful peer negotiations are completed. The information found in the

SPD can be derived from iskampd.conf (IPsec configuration file) and iskampd.policy

(KeyNote). Future research should be performed to design a method of automating the

population of the security policy data base based on entries found in isakmpd.conf and

iskampd.policy. (See Future Work Chapter Seven). Note that security associations (SA)

may also be entered manually. However, this was not within in the scope of my research

and, therefore, I did not include manual keying in the design or implementation.

To set up IPsec flows, the following information is required:

- Protocol type (ESP/AH).

- Destination IP address.

- Transport port (indicates the method of communication i.e. Finger or Telnet) .

- Source IP Address.

- Direction (In or Out).

- Policy Action (Deny, Allow, Require, Acquire).

- SPI (Security Parameter Index) – will be generated and inputted after

SA’s are created from peer negotiations.

The syntax to create IPsec flows is as follows:

ipsecadm flow -proto -dst -spi -transport -src -<direction> -<Policy Action>.

Flows can be generated manually via the command prompt calls or via a script.

Below is the example of the IPsec flow script used in the testing phase of this

thesis. The script is executed by the following syntax: sh vpn_28_ah_a (name of

the saved file listed below).

 #!/bin/sh
#Set-up flows for the two specific hosts
#Use for defining applications FINGER and TELNET
ESP for TELNET
AH for FINGER
-dport for egress traffic
-sport for ingress traffic

Local and remote hosts
LOCAL_HOST=131.120.8.91

133

REMOTE_HOST=131.120.8.95

ipsecadm=/sbin/ipsecadm

Create the host-to-host flow

#egress flow for finger
$ipsecadm flow -dst $REMOTE_HOST -proto ah \
 -addr $LOCAL_HOST 255.255.255.255 $REMOTE_HOST
255.255.255.255 \
 -transport tcp -dport 79 \
 -src $LOCAL_HOST -out -require

#ingress flow for finger
$ipsecadm flow -dst $REMOTE_HOST -proto ah \
 -addr $REMOTE_HOST 255.255.255.255 $LOCAL_HOST
255.255.255.255 \
 -transport tcp -sport 79 \
 -src $REMOTE_HOST -in -require

#egress flow for telnet
$ipsecadm flow -dst $REMOTE_HOST -proto esp \
 -addr $LOCAL_HOST 255.255.255.255 $REMOTE_HOST
255.255.255.255 \
 -transport tcp -dport 23 \
 -src $LOCAL_HOST -out -require

#ingress flow for telnet
$ipsecadm flow -dst $REMOTE_HOST -proto esp \
 -addr $REMOTE_HOST 255.255.255.255 $LOCAL_HOST
255.255.255.255 \
 -transport tcp -sport 23 \
 -src $REMOTE_HOST -in -require

exit 0

Note: When creating scripts within the OpenBSD environment, it is

important to remember the following steps:

- chmod 755 <script name> is used to change the scripts default

permissions and enable the script to be executed.

 - ./<script name> is the syntax for executing a script.

Once the IPsec flows have been created, they need to be mounted in the

kernel (SPD). The following is the syntax required: mount –t kernfs /kern

/kern.

3. IPsec Execution

To start the IPsec mechanism there are numerous syntaxes possible, depending on

134

the level of debugging desired. Since OpenBSD’s IPsec is still considered to be under

development, a debugging mode is very useful to examine functionality and operation.

The following are typical syntaxes:

 - isakmpd – starts the IPsec mechanism without any debugging functionality.

- isakmpd -d -DA=99 – starts the IPsec mechanism with full debugging

functionality. All levels of deugging messages will be displayed.

- isakmpd -d -DA=99 -D1=<Debug Number> - starts the IPsec mechanism with

limited debugging functionality depending on the given debug number.

4. IPsec Connection Termination

There are numerous methods for terminating an existing IPsec connection. One

way involves using CTRL-C in the shell to terminate the IPsec process and established

connections. A similar result can be achieved by simply killing the IPsec process from

the process list. This is performed by using ps –al to locate IPsec process id and then

using kill <id number> to terminate the process.

A gentler approach allows the user to terminate security association connections

individually. In case the user must track the SA connection number index. The typical

progression of index numbers starts at zero and advances by one for both new

connections and terminations. For example, the generation of an SA for telnet

communication between two peers advances the index number to from zero to one. The

generation of another SA for finger communication between two peers advances the

index from one to two. The termination of an existing SA (either of the previously

generated SAs) advances the index from two to three. The termination of the last SA

advances the index from three to four. This process continues until the IPsec mechanism

is halted, which resets the index to zero.

5. Display SPD

During development, it often becomes necessary to review the entries currently

existing in the SPD. The command-line method to perform this is based on the UNIX

netstat command, which displays routing tables. By refining the command using

switches, it is possible to display only the routing information specific to the IPsec

mechanism. The syntax is as follows: netstat -rn -f encap

The following is an example of netstat –rn –f encap between two peers for telnet

135

and finger communications:

Routing tables

Encap:
Source Port Destination Port Proto SA(Address/Proto/Type/Direction)
131.120.8.95/32 23 131.120.8.91/32 0 6 131.120.8.95/50/require/in
131.120.8.95/32 79 131.120.8.91/32 0 6 131.120.8.95/51/require/in
131.120.8.91/32 0 131.120.8.95/32 23 6 131.120.8.95/50/require/out
131.120.8.91/32 0 131.120.8.95/32 79 6 131.120.8.95/51/require/out

6. Display SAD

To ensure that the IPsec mechanism is working properly, it is often important to

view the existing security associations (SA’s) stored in the SAD. The Open BSD IPsec

mechanism stores the SPD in the following file: /kern/ipsec.

When no SA’s exist in the file, the file contains the following entry:

Hashmark: 31, policy entries: 0.

When, for example, two SAs exist (one for telnet and the other for finger

communication) the /kern/ipsec file contain the following:

Hashmask: 31, policy entries: 4
SPI = c322801f, Destination = 131.120.8.91, Sproto = 51
 Established 55 seconds ago
 Source = 131.120.8.95
 Flags (00001082) = <tunneling>
 Crypto ID: 4
 xform = <IPsec AH>
 Authentication = <HMAC-SHA1>
 577 bytes processed by this SA
 Expirations:
 Hard expiration(1) in 3545 seconds
 Soft expiration(1) in 3185 seconds
SPI = bd35c96d, Destination = 131.120.8.95, Sproto = 51
 Established 55 seconds ago
 Source = 131.120.8.91
 Flags (00001082) = <tunneling>
 Crypto ID: 3
 xform = <IPsec AH>
 Authentication = <HMAC-SHA1>
 446 bytes processed by this SA
 Expirations:
 Hard expiration(1) in 3545 seconds
 Soft expiration(1) in 3185 seconds
SPI = 9dde8de1, Destination = 131.120.8.91, Sproto = 50
 Established 66 seconds ago
 Source = 131.120.8.95
 Flags (00001082) = <tunneling>

136

 Crypto ID: 2
 xform = <IPsec ESP>
 Encryption = <3DES>
 Authentication = <HMAC-SHA1>
 1248 bytes processed by this SA
 Expirations:
 Hard expiration(1) in 1134 seconds
 Soft expiration(1) in 1014 seconds
SPI = 95bb697c, Destination = 131.120.8.95, Sproto = 50
 Established 66 seconds ago
 Source = 131.120.8.91
 Flags (00001082) = <tunneling>
 Crypto ID: 1
 xform = <IPsec ESP>
 Encryption = <3DES>
 Authentication = <HMAC-SHA1>
 1408 bytes processed by this SA
 Expirations:
 Hard expiration(1) in 1134 seconds
 Soft expiration(1) in 1014 seconds
7. tcpdump

To verify packet security (either through encryption and/or authentication), a

packet sniffer tool can be used to enable the user to view exchanged packets. Tcpdump,

a packet sniffer utility, is available on OpenBSD. Syntax for the command is: tcpdump –

N host <peer A IP address> and <peer b IP address>.

The –N switch is used to reduce Domain name qualification to make output more

readable. The host switch to identify peer IP addresses.

C. GRAPHICAL USER INTERFACE (GUI) DEMONSTRATION

For many users, the above sequence of commands may be overwhelming and

time consuming. A graphical user interface (GUI) would reduce the level of confusion

and make the IPsec mechanism easier to control and use.

1. Goal

The goal of the GUI demonstration is to provide users with an ability to

demonstrate and use the IPsec mechanism, and fully understand the successes in research

and development that have been performed in this thesis.

2. Mechanism of Demonstration

Java was chosen as the demo’s development language because of its inherent

graphical representation ability. OpenBSD utilizes Kaffe’s version of Java. In order to

incorporate the full graphical capability of Java, a “Kaffe-friendly” SWING package was

installed.

137

2.1 Run Time Execution of Shell Commands from Parent Java Process

The following section is referenced from

(http://java.sun.com/products/jdk/1.2/docs/api/)

The demonstration module requires the ability to execute command-line

calls. This is accomplished by using the following:

- Static declaration of an instance of RunTime: Static Runtime rt. Every

Java application has a single instance of the RunTime class. This instance

enables the application to execute command-line calls from within the

application. It is important to note that an application cannot create its own

instance of the RunTime class.

- Use of an array of strings to construct a shell script command to enable

run time execution. In order for a command to be executed properly, the

command must be incorporated into a string. The following example

demonstrates a run time execution of IPsec:

private static Runtime rt;

String[] s2 = new String[3];

 s2[0]= new String(“/bin/sh”);

 s2[1] = new String(“-c”);

 s2[2] = new String(“ipsec”);

 rt.exec(s2);

- Some commands require switches and additional data in order to be

executed properly. In this case, there are two methods that are used in this

research:

- Command, switches and additional data are included in one string. An

example of this is the use of the ps command (i.e. ps -ax | grep isakmpd |

grep -v grep).

- Command, switches and additional data are broken into separate string in

the array. An example is the use of tcpdump command (i.e. tcpdump -N

131.120.8.95 and 131.120.8.9.

- If certain commands require immediate execution without the parent

138

routine proceeding in command execution, waitFor method can be added

to the exec(<string>) to pause the process until the shell commands

completes its processing. The following example demonstrates a run time

execution of the IPsec flush routine, which would require the parent

process to wait until shell’s completion:

private static Runtime rt;

String[] s2 = new String[3];

s2[0]= new String(“/bin/sh”);

s2[1] = new String(“-c”);

s2[2] = new String(“ipsecadm flush”);

rt.exec(s2);

- All runtime calls require try-catch blocks.

- To receive the current instance of Runtime, the following is the syntax is

used: rt = Runtime.getRuntime();

Execution of all command line calls must utilize the RunTime class and methods.

 2.2 Graphical Demonstration Components

The demo consists of the following components:

- Welcome Screen – provides the user with a demo title screen

with the ability to incorporate logos and credits as needed.

- Main Menu Console – provides the user with all available IPsec

choices, and dynamic parameter console:

- Start IPsec – initiates the IPsec mechanism.

- Display SADB – displays current valid security

associations.

- Display SPD – displays contents of the SPD.

- Display TCPDUMP – provides the user with a Java

JFrame console to view the output of tcpdump.

- Dynamic Parameter console – provides user with a

console to make a selection on the dynamic parameters.

- Display Current Security Policy – provides the user

with a console to view the current security policy in

139

isakmpd.policy/KeyNote.

3. Graphical Demonstration Components

The following sections describe in some detail each of the above listed menu

choices. The functionality of the demo is broken into the following java classes:

- Demo.java – creates the demo welcome screen and the menu choices in

a Java JFrame console.

- Demo_Support_Functions.java – holds all functions used by other

classes.

- DP_Console.java – creates dynamic parameter selection interface in a

Java JFrame console.

- Ipsec_Info.java – creates a continuously updated output of the security

association database (SAD) in a formatted Java JFrame console.

- Tcpdump.java – creates a continuously updated output of the network

packets captured by tcpdump in Java JFrame console.

- SPFK.java – creates a Java JFrame console for formatting and

displaying the security policy found in iskampd.policy/KeyNote.

- SPD.java - creates a Java JFrame console for formatting and displaying

the security policy found in the security policy database (SPD).

 3.1. demo.java

This class creates and handles the generation of the welcome

screen and menu choices.

3.1.1 Design Approach

The initial design was to incorporate both the OpenBSD and NPS

CISR logos on the welcome screen. However, Kaffe’s java library did not properly

support graphic logos (i.e. jpegs, bmp, .gif files). Therefore, the welcome screen consists

of large font title and a continue button.

The menu screen consists of buttons allowing the user to make

selections using a mouse. The menu also has an error checking display, which provides

the user with feedback as necessary. Further details on error checking will follow.

3.1.2 Processing Description

The following is the processing description for the method:

140

- A welcome Java JFrame console is generated with a title and a

continue button linked to an action handler.

- Once the user selects the continue button, the welcome screen is

erased and the menu choice JFrame is painted.

- The menu JFrame provides the user with menu selections via

buttons:

- Start IPsec – starts the IPsec mechanism. If the IPsec

mechanism is already started, an error message is displayed

in the error message display panel.

- Display SAD – starts the ipsecinfo.java thread to provide

the user with a continuously updated display of the

currently existing security associations (SA) via a JFRame.

- Display SPD – creates a formatted display for the

currently existing entries in the Security Policy Database

(SPD) via a JFrame.

- Display Security Policy – parses

iskampd.policy/KeyNote and displays information in a

JFrame.

- Display TCPDUMP – starts the tcpdump mechanism

and displays continuous output in a Java JFrame.

- Dynamic Parameters Interface – provides the user with

a console to select and submit dynamic parameters. If the

user does not select two dynamic parameters prior to

pressing the submit button, an error message is displayed in

the error display panel.

3.1.3 Pseudo Code

The following is a description of the pseudo code used in

demo.java:

- Class: demo extends JFrame.

- Variables used throughout the class, are declared as

Global.

141

- Method: demo class constructor – initializes the welcome

screen.

- Initializes title to JFrame

- Adds a window adapter to handle window exiting

by calling dispose().

- Creates welcome message and displays on JFrame.

- Creates the error display pane l.

- Creates continue button with an action handler.

- Initialize menu choices JFrame title and buttons.

- Method: initialize_connection_index_file() – resets

connection index counter to zero in the connection index

counter file.

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates a file pointer, file output stream

and a print stream to

/root/demo/connection_number

- Writes the number “0” to the file.

- Closes the file.

- Method: load_dp_file(String nm, String sl) – accepts

network mode and security level inputs and writes them

into the dynamic parameter file.

-Input:

- String nm- network mode value.

- String sl – security level value.

- Output: none.

- Process:

- The following process is enclosed in a try-

142

catch block.

- Creates a file pointer, file output stream

and a print stream to

/usr/src/sbin/isakmpd/dynamic_paramete

rs

- Writes the network mode value and

security level value to the file in the

following format:

network_mode = <network mode value>

security_level = <security level value>

- Closes the file.

- Class: ContinueButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) – action

handler for the continue button on the welcome JFrame.

- Process:

- Erases existing components on the

Welcome JFrame.

- Creates menu title, menu choices buttons

and displays on menu choices JFrame.

-Adds an action handler to all buttons.

- Class: SPButtonHandler implements ItemListener

- Method: actionPerformed(ActionEvent e) – action

handler for the start IPsec button.

 - Process:

- Checks to see if IPsec is currently running

by calling demo_support_functions

.daemon_running().

- If IPsec is already running then displays

error message in error display panel and exit

handler routine.

- Otherwise, proceeds.

143

- Loads default network mode and security

level values using load_dp_file().

- Flushes the IPsec mechanism of previous

existing security associations (SA) by

calling

demo_support_functions.flush_ipsec().

- Mounts the kernel by calling

demo_support_functions.mount_kern().

- Loads the SPD policy values by calling

demo_support_functions.load_spd().

- Class: DSButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) – action

handler for Display SAD button.

- Process:

- Instantiates and start ipsecinfo.java thread.

- Class: SPDButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) – action

handler for Display SPD button.

- Process:

- Instantiates SPD.java class to display the

SPD.

- Class: DSPButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) – action

handler for Display Security Policy button.

- Process:

- Instantiates SPFK.java class to display the

Security Policy.

- Class: TCPButtonHandler implements ActionLis tener

- Method: actionPerformed(ActionEvent e) – action

handler for Display tcpdump button.

- Process:

144

- Instantiates and start tcpdump.java thread.

- Class: DPButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) –

action handler for Dynamic Parameterization button.

- Process:

- Instantiates dp_console.java.

- Class: INFButtonHandler implements ActionListener– action

handler for Stop IPsec button.

- Method: actionPerformed(ActionEvent e) – action

handler for Exit menu.

- Process:

- Checks to see if IPsec is currently running

by calling demo_support_functions.

daemon_running().

- If so, then tears down existing connections

by calling demo_support_functions.

Tear_down_connections() and stopS the

IPsec mechanism by calling

demo_support_functions.stop_ipsec().

- Class: EXButtonHandler implements ActionListener– action

handler for Exit button.

- Method: actionPerformed(ActionEvent e) – action

handler for Exit menu.

- Process:

- Checks to see if IPsec is currently running

by calling demo_support_functions.

daemon_running().

- If so, then tears down existing connections

by calling demo_support_functions.

Tear_down_connections() and stopS the

145

IPsec mechanism by calling

demo_support_functions.stop_ipsec().

- Exits the program.

- Method: static main(String args) – the main program of

the demo class.

- Process:

- Gets the current runtime instance by

calling getRuntime().

 - Initiates the demo.java class.

 3.2. demo_support_functions.java

This class holds commonly used functions by the other classes.

3.2.1 Design Approach

In accordance with proper software engineering techniques,

commonly used functions should be shared among classes. This will reduce the code

length and make code management easier. This module includes those functions.

3.2.2 Processing Description

No processing description is necessary since this class performs no

tasks other than hold all functions used by other classes.

 3.2.3. Pseudo Code

The following is a description of the pseudo code for

demo_support_functions.java:

- Class: demo_support_functions.

- Variables used throughout this class, are declared as

Global.

 - Method: demo_support_functions constructor.

 - Process:

- Gets the current instance of Runtime by

calling Runtime.getRuntime() .

- Method: flush_ipsec() – generates the run time

commands to flush the IPsec mechanism.

146

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates an array of strings to hold the

sequence of commands and tags required to

perform a run time execution (see above

section B 2.1 in this chapter for more

details) of ipsecadm flush.

- Note that waitFor() is required since it is

necessary for the parent process to wait for

its completion.

- Method: load_spd() – generates the run time commands

to load SPD with the security policy.

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates an array of strings to hold the

sequence of commands and tags required to

perform a run time execution (see above

section 2.1 for more detail) of sh

vpn28_ah_a..

- Note that waitFor() is not required since it

is not necessary for the parent process to

wait for its completion.

- Method: mount_kern() – generates the run time

commands to mount the kernel.

 - Input: none.

147

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates an array of strings to hold the

sequence of commands and tags required to

perform a run time execution (see above

section 2.1 for more detail) of sh

/root/mount_kern. This is the name of a

script that contains the following code:

mount –t kernfs /kern /kern.

- Note that waitFor() is not required since

the it is not necessary for the parent process

to wait for its completion.

- Method: start_ipsec() – generates the run time commands

to start the ipsec mechanism.

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates an array of strings to hold the

sequence of commands and tags required to

perform a run time execution (see above

section B 2.1 in this chapter for more detail)

of sh /root/mount_kern. This is the name

of a script that contains the following code:

ipsec.

- Note that waitFor() is required since it is

necessary for the parent process to wait for

its completion.

148

- Method: stop_ipsec() – generates the run time commands

to stop the IPsec mechanism.

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates a file pointer and file input stream

to /var/run/isakmpd.pid.

- Reads in the process id found in the file,

which will be used to kill the IPsec process.

- Creates an array of strings to hold the

sequence of commands and tags required to

perform a run time execution (see above

section 2.1 for more detail) of sh

/root/mount_kern. This is the name of a

script that contains the following code: kill

<process id>

- Note that waitFor() is required since it is

necessary for the parent process to wait for

its completion.

- Closes the file.

- Method read_connection_index_file()– reads in the

current value of the index counter from a file.

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates a file pointer and file input stream

to /root/demo/connection_number.

149

- Reads in the current connection index

counter and store in a global variable.

- Closes the file.

- Method: write_connection_index_file()– writes the

current value of the index counter to a file.

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates a file pointer, file output stream,

and print stream to

/root/demo/connection_number.

- Writes the current connection index

counter and store in a global variable.

- Closes the file.

- Method: daemon_running() – checks to see if the IPsec

process is currently running.

- Input: none.

- Output:

- Boolean result – true if IPsec is currently

running and false otherwise.

 - Process:

- The following process is enclosed in a try-

catch block.

- Creates an array of strings to hold the

sequence of commands and tags required to

perform a run time execution (see above

section 2.1 for more detail) of sh

/root/mount_kern. This is the name of a

script that contains the following code: ps -

150

ax | grep isakmpd | grep -v grep >

daemon_search. This command performs a

ps list (active processes) and then retrieves

only the entries that have the word iskampd

and pipes them into daemon_search file.

The switch –v grep removes the call from

the ps listing.

- Note that waitFor() is required since it is

necessary for the parent process to wait for

its completion.

- Creates a file pointer and file input stream

to /root/demo/daemon_search

- Retrieves the current file size of

daemon_search.

- If the file size is zero, the IPsec mechanism

is not running. Returns false.

- If the file size is greater then zero, the

IPsec mechanism is running. Returns true.

 - Closes the file.

- Method: stop_tcpdump() – terminates tcpdump process.

- Input: none.

- Output: none.

 - Process:

- While loop – until Boolean terminate flag

is set.

- The following process is enclosed

in a try-catch block.

- Creates an array of strings to hold

the sequence of commands and tags

required to perform a run time

execution (see above section 2.1 for

151

more detail) of ps -ax | grep

tcpdump | grep -v grep | grep -v

/bin/sh. This command performs a

ps list (active processes) that contain

the tcpdump title.

- Note that waitFor() is required

since it is necessary for the parent

process to wait for its completion.

- Creates a data stream pointer to the

above created process stream.

- Retrieves the process id of the

running tcpdump process.

- Creates an array of strings to hold

the sequence of commands and tags

required to perform a run time

execution (see above section 2.1 for

more detail) of kill + <tcpdump

process>. This command kills the

tcpdump process.

- Note: during testing it was

discovered that when executing the

tcpdump script two tcpdump

processes are created. Therefore this

routine loops until all tcpdump

process are killed.

- When no more tcpdump processes

are found, set Boolean flag to exit

while loop.

- Method: tear_down_connections() – tears down existing

security association (SA) connections between peers.

- Input: none.

152

- Output: none.

 - Process:

- Calculates existing connections (security

association) by calling calc_connection().

- Retrieves the current connection index

counter by calling

read_connection_index_file().

- The following process is enclosed in a try-

catch block.

- An assumption is made here that every SA

consist of pair of two connections.

- Divide number of current connections by

two.

- If the number of current connection equals

zero, no security association currently exist.

Exits method.

- Otherwise, proceeds.

- For-loop for the number of connections

(divided by two).

- Writes the connection number

index to a file to terminate that

connection by calling

write_to_fifo();

- Checks to see if in the last iteration

of the loop. If so, exit loop by using

break.

- Otherwise, increases connection

index counter by one.

- For information on connection

counter index refer to section A.5 in

this chapter.

153

- Creates a file pointer and file input stream

to /var/run/isakmpd.pid

- Reads in the process id for IPsec from

isakmpd.pid.

- Closes the file.

- Creates an array of strings to hold the

sequence of commands and tags required to

perform a run time execution (see above

section B 2.1 for more detail) of kill –HUP

<process id>. The –HUB switch causes a

“hang-up” action to be performed on the

connection and instructs it to reread the

configuration files.

- Note that waitFor() is required since it is

necessary for the parent process to wait for

its completion.

- The current index counter is then written to

the connection_number file by calling

write_connection_index_file().

- Method: write_to_fifo()– uses the current connection

index to write teardown instructions to the IPsec

mechanism in /var/run/isakmpd.fifo file.

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates a file pointer, file output stream,

and print stream to /var/run/isakmpd.fifo.

- Writes the current connection index

counter and the tear down instruction by

154

writing t Connection-+ <connection

number index >.

- Connection number is stored in a global

variable.

- Closes the file.

- Method: synchronized copy_kern_ipsec() – copies the

file /kern/ipsec (file containing the current security

associations) to /root/demo/tempipsec (file used to parse

security associations). This method is synchronized to

avoid a deadlock when various threads, created by the

demo, compete for this function.

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates an array of strings to hold the

sequence of commands and tags required to

perform a run time execution (see above

section B 2.1 in this chapter for more detail)

of cp /kern/ipsec /root/demo/tempipsec.

- Note that waitFor() is required since it is

necessary for the parent process to wait for

its completion.

- Method: calc_connection()– calculates the number of

existing security associations (SA) by reading

/root/demo/tempipsec and parsing the information to

count existing SAs.

- Input: none.

- Output: none.

- Process:

155

- The following process is enclosed in a try-

catch block.

- Creates a file pointer and file input stream

to /root/demo/tempipsec

- Performs a “thread sleep” operation for

one second to allow time for other processes

to use the /root/demo/tempipsec.

- Reads in the contents of the file into a

StringTokenizer buffer.

- Closes the file.

- While loop until all tokens have been

parsed.

- Advances to next token.

- Compares token with “SPI”. If

match found, increment

connection_counter (a global

variable).

 3.3 dp_console.java

This class generates the dynamic parameter selection interface with radio

buttons for network mode and security level selection. The user must select a network

mode and security level and press the submit button. The interface also has an exit

button to close the window.

3.3.1 Design Approach

The dynamic parameter console provides the user with a selection

mechanism for network mode and security level. Error checking is provided to ensure

that the user selects one of each. To activate the selection, the user must press the submit

button. Action handlers are provided to initiate the change in mode and level.

 3.3.2. Processing Description

 The following is the processing description used to design and

develop dp_console.java:

- The dp_console is initialized as a JFrame with radio

156

buttons for network mode and security level selections.

- The user must select a network mode and a security level

before pressing the submit button. If not, an error message

is displayed.

- Once a valid selection has been made, the submit button

generates a signal to the IPsec mechanism to reconfigure in

accordance to the new network mode and security level.

 3.3.3 Pseudo Code

The following is a description of the dp_console class pseudo

code:

 - Class: dp_console extends JFrame

- Most variables used throughout this class are Global.

- Method: dp_console() constructor – initializes the

dynamic parameter selection interface.

 - Process:

 - Initializes interface JFrame.

- Adds a window adapter to handle window

exiting by calling dispose().

- Creates titles for network mode and

security level.

- Creates radio buttons with action handlers

for network modes and security levels.

- Creates Submit button with an action

handler.

- Creates an Exit button with an action

handler to close the window by calling

dispose().

- Initializes global network mode and

security level variables.

- Instantiates an instance of

demo_support_functions .

157

- Gets the current Runtime instance by

calling getRuntime().

- Method: start_dp_console() – makes the dp_console

visible.

 - Input: none.

 - Output: none.

 - Process:

 - Sets the JFrame to visible.

- Method: reset_error_panel() – clears error message

panel.

 - Input: none.

 - Output: none.

 - Process:

- Erases any existing text in the error

message panel.

- Method: set_dynamic_parameters() – stores the value of

the dynamic parameters in a file.

 - Input: none.

 - Output: none.

 - Process:

- Ensures that that old file is deleted by

calling delete_file().

- Writes the current value of the dynamic

parameters in a file by calling

write_dynamic_parameters_file().

- Method: write_dynamic_parameters_file – writes the

global current value of the dynamic parameters to

/usr/src/sbin/isakmpd/dynamic_parameters.

 - Input: none.

 - Output: none.

 - Process:

158

- The following process is enclosed in a try-

catch block.

- Creates a file pointer, file output stream,

and print stream to

/usr/src/sbin/isakmpd/dynamic_paramete

rs.

- Writes the current value of the network

mode and security level stored in global

variables to the file.

- Closes the file.

- Method: print_dynamic_parameters_file() – displays

the current value of network mode and security level to the

system console for trouble shooting purposes.

- Input: none.

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates a file pointer, and file input stream

to

/usr/src/sbin/isakmpd/dynamic_paramete

rs.

- Reads in the current value of the network

mode and security level and displays the

values via the system console.

- Closes the file.

- Method: read_dynamic_parameters_file() – reads in

the value of network mode and security level from file:

/usr/src/sbin/isakmpd/dynamic_parameters and stores

them in the class global variables respectively.

- Input: none.

159

- Output: none.

- Process:

- The following process is enclosed in a try-

catch block.

- Creates a file pointer, and file input stream

to

/usr/src/sbin/isakmpd/dynamic_paramete

rs.

- Reads in the current value of the network

mode and security level and stores them in

their global variables respectively.

- Closes the file.

- Method: delete_file() – deletes existing dynamic

parameter file.

 - Input: none.

 - Output: none.

 - Process:

- The following process is enclosed in a try-

catch block.

- Creates a file pointer to

/usr/src/sbin/isakmpd/dynamic_paramete

rs.

 - The file is deleted.

- Class: SLRadioButtonHandler implements ItemListener –

security level radio button action handler

- Method: itemStateChanged(ItemEvent e)

 - Process:

- Stores the selected value in the global

security level variable.

- Class: NMRadioButtonHandler implements ItemListener –

network mode radio button action handler

160

- Method: itemStateChanged(ItemEvent e)

 - Process:

- Stores the selected value in the global

network mode variable.

- Class: SubmitButtonHandler implements ActionListener –

submit button action handler.

 - Method: actionPerformed(ActionEvent e)

 - Process:

- Verifies that a network mode and secur ity

level have been chosen.

- If not, displays an error message and exit

handler.

 - Otherwise continues.

- Saves the selected values to the dynamic

parameter file by calling

set_dynamic_parameters().

- Verifies if IPsec mechanism is already

running by calling

demo_support_functions.daemon_runnin

g().

 - If so, performs the following:

- Copies the SAD values to a temp

file for processing (used for

connection calculations) by calling

demo_support_functions.copy_ker

n_ipsec().

- Tears down existing connections to

reconfigure the IPsec mechanism

with the new network mode and

security level by calling

demo_support_functions.tear_dow

161

n_connection().

- Flushes existing security

association values from the IPsec

mechanism by calling

demo_support_functions.flush_ips

ec().

- Loads the SPD for the

reconfiguration phase by calling

demo_support_functions.load_spd

();

- Otherwise, displays a message informing

the user that the IPsec mechanism must be

started first before the dynamic parameter

can take effect.

- Class: ExitButtonHandler implements ActionListener – Exit

button action handler.

 - Method: actionPerformed(ActionEvent e)

 - Process:

 - Terminate the JFrame by calling dispose().

3.4 ipsecinfo.java

The ipsecinfo class provides a display mechanism fo r the Security

Association Database (SAD). The display needs to be updated constantly to reflect

changes caused by the dynamic parameterization of the IPsec mechanism (i.e. shift in

network mode and/or security level).

3.4.1. Design Approach

The ipsecinfo class will provide the user with a constantly updated

display of existing security associations in the SAD. The mechanism once started must

continue until terminated. To ensure that the user can easily read the output, the display

should adjust in size in accordance with the number of SA’s with the Security

Association Database (SAD).

3.4.2. Processing Description

162

The following is the processing description used to design and

develop the ipsecinfo class:

- Once initiated, the process runs independently

(thread) until terminated.

- Reads in data from /kern/ipsec and parses it

accordingly.

- To reduce wasted CPU processing time, the file is

only read and parsed if it has been updated since the

last parsing operation, and is in its complete form.

To accomplish this, the class can utilize file date-

time-stamps and comparison algorithms with

previously displayed SA’s. During the development

phase, it was discovered that the IPsec mechanism

writes to /kern/ipsec incrementally. Therefore it is

important to make sure the whole file is present

prior to parsing. An algorithm is required that will

check the file for all mandatory fields prior to

parsing.

- Also, a temporary file needs to be copied to avoid

permission issues when the IPsec mechanism wants

to write to the file.

- When the file is updated, the process of reading

the file and parsing begins.

- To parse the file, the following tags are used:

- SPI

- Destination

- Source

- xform

- encryption

- authentication

- As the parsing occurs, text is added to the display

163

dynamically.

- At the completion of the parsing, the number of

SA’s is used to determine the size of the JFrame.

- The JFrame will terminate once the exit button is

pressed.

 3.4.3. Pseudo Code

 The following is a description of the pseudo code for

ipsecinfo.java:

 - Class: ipsecinfo extends Thread

- Most variables used throughout this class are Global.

- Method: ipsecinfo() – class constructor.

 - Process:

 - Initializes a JFrame.

 - Initializes all display mechanisms.

- Gets the current Runtime instance by

calling getRuntime().

- Instantiates an instance of

demo_support_functions

- Adds a window adapter to handle window

exiting by calling dispose().

- Method: frame_initialization() – initializes the JFrame to

repaint new SAs.

 - Input: none.

 - Output: none.

 - Process:

- Removes existing components from the

JFrame.

 - Reinitializes all components.

- Method: prelimanary_test(StringTokenizer st) –

compares the current SA’s in the JFrame with the SA’s

from the new file. This is performed to avoid unnecessary

164

painting and maintain good display resolution.

 - Input:

- StringTokenizer st – contents of the file to

be verified.

 - Output:

- Boolean – True if string contains new

SA’s. False otherwise.

 - Process:

- The following process is enclosed in a try-

catch block.

- While loop through all string tokens.

- Compares SPI’s of existing SA’s

with new SA’s.

- If a new SA is found, returns true.

- Otherwise, keep checking all SA’s

 - Default return is false.

- Method: String wait_for_full_copy(String record)–

verifies that all the required tags exist in the string prior to

parsing. If not, file is reread and the string is verified until

all the tags are found.

 - Input:

- String record – contents of the file to be

verified.

 - Output:

- String – String that contains all required

fields.

 - Process:

- The following process is enclosed in a try-

catch block.

- While loop through all string tokens.

- Tests to see if the following tokens

165

exist in the string:

- SPI

- Destination

- Source

- xform

- If all tokens are found, the current string is

returned.

- Otherwise, the file is reread and the new

string is verified. This process continues

until all required fields are found.

- Method: parse(String record) – parses the string into

SA’s to be displayed on the JFrame.

- Input:

- String record – contains the file to be

parsed.

 - Output: none.

 - Process:

- The following process is enclosed in a

try-catch block.

- Verifies that the new string contains new

SA’s to paint by calling

prelimanary_test().

- If new strings are found, continues parsing.

- Otherwise, exits the method.

- Verifies that all fields are present in the

string. If not, waits until all fields are

present. This is performed by calling

wait_for_full_copy().

- If all fields are present, continues parsing.

- Uses the StringTokenizer to efficiently

breakup the string for parsing.

166

- While loop through the string tokens.

- Parses the string based on the

following fields:

- SPI – indicates new SA.

Skip a line in JFrame.

Increment SA counter.

- Destination – used to

retrieve the destination IP

address.

- Source – used to retrieve the

source IP address.

- xform – used to determine

the method of protection (AH

or ESP)

- Encryption – used to

determine the encryption

algorithm.

- Authentication – used to

determine the authentication

algorithm.

- Sizes the JFrame according to the number

of SA’s (SA counter).

 - Method: run()

 - Input: none.

 - Output: none.

 - Process:

- The following process is enclosed in a try-

catch block.

- Creates a file pointer to

/root/demo/tempipsec.

- While loop continuously until thread is

167

terminated.

- Compares old file date time stamp

with new date time stamp.

- If they do not match, reads in the

file.

- Creates a file input stream to

/root/demo/tempipsec.

- Reads in the file into a string.

- Closes the file.

- Initiates the parsing routine by

calling parse().

 3.5 tcpdump.java
A valuable tool in demonstrating the IPsec mechanism is tcpdump

(described earlier in section B.8). It enables the user to view the actual packets being sent

and received across the network. Specifically, it facilitates the demonstration of packets

sent in the clear, encrypted and/or authenticated. This tool is typically used via the

command prompt. The challenge was to filter the tool’s terminal console output through a

Java JFrame to maintain a consistent graphical user interface approach. Again the goal is

to limit the user’s required knowledge of the operating system and environment to utilize

the security mechanism.

3.5.1 Design Approach

The goal of this class is to provide the user with graphical console

display of tcpdump. By selecting the Display TCPDUMP option from the main menu,

the tcpdump function starts and displays captured packet information in the generated

Java JFrame. When the user closes the window, the tcpdump function terminates.

3.5.2. Processing Description
 The following is the processing description for the tcpdump.java:

- Once instantiated, the tcpdump class launches, creating a

JFrame Java console window.

- The JFrame should contain:

- Console title.

- Scrollable view pane (since a large amount of data

168

generated by tcpdump).

- Exit button to close the JFrame and terminate

tcpdump.

3.5.3. Pseudo Code
 The following is the pseudo code for tcpdump.java:

- Class: tcpdump extends Thread.

- Variables used throughout the class, are declared as

Global.

- Method: tcpdump() – constructor for the class.

- Process:

- Instantiates demo_support_functions

class.

- Gets the current Runtime instance by

calling getRuntime().

- Initializes JFrame with title.

- Initializes scrollable text frame.

- Initializes exit button panel.

- Adds exit button action listener.

- Terminates tcpdump by calling

demo_support_functions.stop_tcpdump().

- Closes the JFrame by calling dispose().

- Adds a window listener that closes JFrame

by calling dispose().

- Method: start_tcpdump() - executes tcpdump and

creates a pipe to capture packet information.

- Input: none.

- Output: none.

- Process:

- The following code is enclosed in a try

catch block.

- Creates an array of strings to hold the

169

sequence of commands and tags required to

perform a run time execution (see above

section B 2.1 in this chapter for more detail)

of tcpdump -N 131.120.8.95 and

131.120.8.9.

- Note1: that wait() is required since it is not

necessary for the parent process to wait for

its completion. If it did not wait, further

processing in the class would be performed

until the tcpdump process was terminated.

- Note2: With tcpdump, all tags and values

have to be added to the string array

separately in order to execute properly

(unlike other commands where switches and

tag values can be included in the string array

as one string).

- Create an input stream to the tcpdump

process.

- Method: repaint_frame() – this method generates the

output from the piped stream and displays to the scrollable

text area.

- Input: none.

- Output: none.

- Process:

- The following code is embedded in a try-

catch block.

- Initializes the buffer reader to buffer the

piped information from tcpdump.

- While loop until JFrame is closed (while

(true)).

- Reads data from the buffered

170

reader pipe.

- Appends data to the scrollable

pane.

- Pauses to allow for printed

changes to be viewed on the screen.

- Method: run() – run method for the thread.

- Process:

- Sets JFrame to visible.

- Executes tcpdump by calling

start_tcpdump().

- Activates the display of tcpdump by

calling repaint_frame().

3.6. SPD.java
The purpose of this class is to provide a display for the security policy

database (SPD). Since the database has a specific format, title tags are used to display the

information.

3.6.1. Design Approach
The goal of this class is to retrieve the data stored in the security

policy database (SPD) and display on screen in an easy to read format. A static

implementation is used.

3.6.2. Processing Description

The following is the processing description used to design and

develop SPD.java:

- Initializes a JFrame with a view panel to display the SPD

information and an exit button to terminate the window.

- Executes the command to generate an output of the SPD

(netstat -rn -f encap).

- Creates a pipe to the process to retrieve the data.

- Displays the data on the screen in an organized easy to

read manner.

 3.6.3 Pseudo Code

 The following is a description of the pseudo code used in

171

SPD.java:

 - Class: SPD

- Variables used throughout the class, are declared as

Global.

 - Method: SPD() class constructor.

- Instantiates demo_support_functions class.

- Gets the current Runtime instance by calling

getRuntime().

- Initializes JFrame with a title.

- Initializes the view panel.

- Initialize the JPanels, JLabels and Text areas to be

used in displaying SPD data.

- Initializes the exit button panel.

- Adds exit button action listener to close the

JFrame by calling dispose().

- Adds a window listener to close JFRame by

calling dispose().

- Retrieves data and display information in the

JFrame by calling setTextFields().

- Method: String create_SPD_input() – this method

retrieves the SPD data, stores it in a string and returns it to

the calling function.

- Input: none.

- Output:

 - String – contains the retrieved SPD data.

- Process:

- The following code is enclosed in a try

catch block.

- Creates an array of strings to hold the

sequence of commands and tags required to

perform a run time execution (see above

172

section B 2.1 in this chapter for more detail)

of netstat -rn -f encap

- Note: that waitFor() is required since it is

necessary for the parent process to wait for

its completion.

- Creates an input stream to the netstat

process.

- Retrieves the SPD data from the input

stream by calling inputStream.read().

- Casts the information as a string and

returns to calling method.

- Method: setTextFields() – this method parses the input

string and displays the SPD data in the JFrame.

- Input: none.

- Output: none.

- Process:

- Casts the string as a String Tokenizer to

parse data using blank space as the token

delimiter.

- Skips the header titles.

- While loop through all string tokens.

- Parses the expected data

appropriately into a display field.

- Adjusts JFrame size according to

number of rows in the SPD.

 3.7 SPFK.java

The purpose of the SPFK.java class is to provide the user with a

more readable display of the KeyNote file. From previous discussions and examples

provided in this thesis, it should be clear that KeyNote can become quite complex and

difficult to read. SPFK.java attempts to provide the user with an easier representation of

the defined security policy.

173

 3.7.1. Design Approach

The goal of this class is to translate KeyNote’s complex

assertion format into an easy to understand syntax and display it in a JFrame. By using

the DNF parser (NPS-CS-02-002, January 2002), the class can take advantage of the

translated DNF form to perform a parsing routine. The display should be equipped with a

scroll bar for long policies (quite typical when dealing with numerous security attributes

and dynamic parameters). It should also have an exit button to close down the JFrame.

 3.7.2. Processing Description

 The following is the processing description used to design

and develop SPDK.java:

- Once instantiated, a Java JFrame console window is

created.

- The JFrame contains:

- Console title.

- Scrollable view pane (since a large amount of policy

data will typically be displayed).

- Exit button to close the JFrame and terminate SPDK.

3.7.3. Pseudo Code

The following is a description of the pseudo code

description for SPDK.java:

- Class: SPFK()

- Variables used throughout the class, are declared as

Global.

- Method: SPFK() – this method initializes the JFrame and

reads in the security policy data from a file.

- Input: none.

- Output: none.

- Process:

 - Initializes the JFrame with a title.

 - Initializes the scrollable text area.

- Initializes the exit button and add an action

174

handler that will terminate the JFrame by

calling dispose().

- Retrieves the security policy from DNF

converted KeyNote file

(/etc/isakmpd/KeynoteDNFFinal.policy)

by calling

demo_support_functions.read_file() and

storing data in a string.

- The following code is embedded within a

try-catch block.

- Casts the string into a string tokenizer

using ‘|’ as the delimiter.

- While loop through all string tokens.

- Parses through the code retrieving

security proposals as tokens.

- Further parses and appends

KeyNote security attribute to the

scrollable text area by calling

showPolicy().

- Method: showPolicy(String policy) – takes input string

(security proposal), parses it into security attributes and

dynamic parameters, and appends to the scrollable text

area.

- Input:

 - String – security proposal to be parsed.

- Output: none.

- Process:

 - Casts input string as string tokenizer.

 - While loop through all string tokens.

- Parses through the string, checking

for expected tags and retrieving tag

175

values.

- Displays tags and tag values on the

scrollable text area by calling

addText().

- Method: addText((String, String) – takes input strings

and appends them to the scrollable text area.

- Input:

 - String – tag.

 - String – tag value.

 - Output: none.

 - Process:

- If tag value is not null, appends tag and tag

value to the screen.

D. CONCLUSION

This chapter reviewed the process used to design and develop a graphical user

interface demonstration to support the research performed in this thesis. Prior to this

demo, all commands and processes were managed from the command prompt. This

proved to very cumbersome and difficult to understand for most users. By researching the

mechanics involved in the “command-line” commands required to operate the IPsec

mechanism, I was able to capture the functionality in a GUI. The GUI demo is easy to

use and understand, and ultimately provides an efficient method to perform a

demonstration on the completed research from this thesis.

The following chapter is a future work discussion, outlining all the potential areas

for future research.

176

THIS PAGE INTENTIONALLY LEFT BLANK

177

VII. RESEARCH SUMMARY AND FUTURE WORK

A. INTRODUCTION

The research presented in this thesis, provides a proof of concept for

parameterizing the IPsec mechanism, specifically OpenBSD 2.8 IPsec. The focus of this

work and development was on a limited number of security parameters and a peer-to-peer

network configuration. Although the design was generalized to handle all security

parameters and network configurations, further implementation will be required to

broaden the functionality of IPsec parameterization. Additionally, there are other features

that require research, development and implementation to harness OpenBSD’s IPsec’s

capabilities.

In this chapter, the research performed in this thesis will be summarized and the

future areas of research in OpenBSD IPsec will be dicussed.

B. SUMMARY OF RESEARCH PERFORMED IN THIS THESIS

The goal of this thesis was to provide dynamic parameterization to security

mechanisms, specifically OpenBSD 2.8 IPsec. To perform this, I studied the concepts of

Quality of Security Service (QoSS), Dynamic Parameters (Network Mode and Security

Level), and IPsec architecture. I then designed a dynamic parameterization

implementation specific to OpenBSD IPsec version 2.8. To further illustrate this

mechanism, I designed and implemented a graphical user interface that enabled the user

to view and understand the dynamism of the modified IPsec mechanism. Below is a brief

summary of all the above-mentioned areas.

Quality of Security Service (QoSS) provides a mechanism to access security

services in accordance with the user and system requirements, as constrained by the

network environment. Security services can be defined in terms of user and system

requirements, network environment factors and available resources. Without a range of

security options, a user is faced with the rigid and limited choice of “all or nothing”:

security or no security. Historically, security services have been static. Quality of

Security Service (QoSS) provides a more flexible approach to security services. Users

can define requirements with finer granularity through QoSS. The security resource

178

manager and/or the Security System can adjust security service accordingly to meet user

requirements, system policy and network environment. The utilization of security

services comes with a cost to the user, application, system and resources. Whether in the

form bandwidth, algorithm processing time, overhead, or funds, the cost of security is a

challenging concern to resource managers. A costing framework is required to map

system resource impact to enable a management system to effectively handle security

service requests.

Security services include non-repudiation, auditing, authentication, encryption, or

intrusion detection. Each service will require a governing policy, consisting of specific

rules of how and when to use the service. Therefore each network task associated with

QoSS can be mapped to a vector of security requirements directly associated with the

security services the task requires.

Static security parameters limit a security system’s ability to adapt to changes. By

introducing a dynamic mechanism, a system can modulate its security settings in

accordance with changing conditions. To illustrate the ability to adapt dynamic

parameters to a QoSS framework we utilize the Network Mode and Security Level

abstractions.

Network Mode enables a network security policy to be classified according to

environmental variables. Some example modes might be normal, impacted, and crisis.

Normal mode could be defined as ordinary operating conditions with normal traffic load

and no heightened threat conditions. Impacted mode may be defined when the

network/system is experiencing high levels of traffic and therefore certain security

selection may not be available due to efficiency constraints. Crisis mode may be defined

as a situation that requires the highest level of security or the lowest level dependent on

the situation and policy.

Security Levels are used to provide further granularity to Network Security

Policies. By developing a security definition that encompasses general security settings

required by users or applications, the complexity of security settings can be simplified to

present to users selections such as High, Medium and Low. High would require the

strongest security settings. Medium would require moderate security settings. Low would

179

require weak to no security settings. A mapping of security settings to security levels

providing a range of selection or specific values will be required to properly enforce the

system security policy.

As a proof of concept to demonstrate how a specific security mechanism can be

modulated to provide different levels of security in accordance with QoSS, the OpenBSD

IPSec security mechanism was used. OpenBSD IPsec utilizes the KeyNote Trust

Management component, which enables a security policy to be mapped to appropriate

security attributes. When a initiator, peer A, wants to establish secure communication

with a responder, peer B, the peer A’s IPsec mechanism proposes a set security proposals

to peer B. Peer B’s IPsec mechanism verifies the proposal by performing a query against

their security policy in KeyNote. If a suitable security proposal is found, the

communication handshake is completed, and the peers establish secure communication

channels defined by security associations (SA).

This process is static because when the network mode or security level change

and an adjustment in security policy is required, then the IPsec mechanism must be halted

and manual adjustments are required. This is not practical or efficient. An automated

technique is required to modulate IPSec's variant security attributes according to network

mode and security level selections, enabling the security mechanism to dynamically

adjust security parameters and settings in accordance with policy.

The current process also maintains security policy definitions in numerous areas,

resulting in management challenges. During (re)configuration phase in IPsec, two

separate files are read to load the security proposal set. Thus, another goal of this thesis

was to streamline the security policy loading process by maintaining the security policy

in only one area/file (KeyNote).

1. Research Conclusions

To accomplish the goals stated above, the following modifications to the existing

IPsec implementation were required. The first modification was to provide granularity to

KeyNote, and parameterize and improve isakmpd.conf / isakmpd.policy (KeyNote)

security proposal range loading process. Providing granularity to KeyNote required an in-

depth review of the KeyNote structure including the Boolean query mechanism. The

180

research proved to be successful in logically inserting the dynamic parameter values

according to policy definition, therefore, providing finer granularity to Boolean query

mechanism. Other modifications included the changes to the configuration process to

enable security proposal ranges to be retrieved from KeyNote. All modifications were

successful in providing the IPsec mechanism with the ability to adjust security attributes

according to dynamic parameters and security policy.

OpenBSD IPsec currently requires a complex sequence of commands via

command-line commands to establish secure connection between peers. The process of

establishing an IPsec connection with a peer requires considerable knowledge of the

operating environment. The command-line procedure also provides challenges in

demonstrating the effectiveness of the parameterization of IPsec mechanism. As a result,

a user- friendly graphical oriented interface was design and developed to allow users, with

limited knowledge of OpenBSD operating environment, to observe the security

mechanism and its dynamic parameterization.

C. FUTURE DESIGN AND IMPLEMENTATION ON
PARAMETERIZATION

To further develop the functionality of the parameterization of the

OpenBSD IPsec mechanism, additional design and implementation is required. Listed

below are the major items that will require future attention.

1. Ability to Handle all Possible Security Parameter Combinations

The research performed was limited in the range of possible security parameters.

The goal instead was to achieve a proof of concept to pave the path for a fully functional

parameterization of IPsec. To achieve full functionality, research will be required to

ensure all possible combinations of security attributes are taken into consideration in the

actual implementation. Examples of further implementation involve incorporating all

possible encryption and authentication algorithms, algorithm key length, and time-of-day

parameters. Additional development will be required to incorporate inequality definitions

(<, >, !=) in the security policy management mechanism. For example, esp_enc_alg >

DES which would imply 3DES and AES.

2. Improving Dynamic Parameter Loading by Utilizing “Policy-
Callback” Embedded Functionality

The original implementation of OpenBSD IPsec utilizes a “policy_callback”

181

routine to load security proposals into a structure for KeyNote query operation. The

procedure is very efficient because all parameters are loaded into the KeyNote query

structure at once. During the implementation portion of this thesis, all attempts to utilize

the existing “policy-callback” mechanism to load dynamic parameters were unsuccessful.

The work-around was to load one dynamic parameter at a time.

3. Eliminate the Need for isakmpd.conf Entirely

This thesis involved removing isakmpd.conf security parameters specific to the

ISAKMP Phase II quick mode. However, main/aggressive mode information and

additional peer information (IP addresses, Net Mask, Gateway Address) still remain

resident in isakmpd.conf. The challenge is that the current configuration of KeyNote

does not support non-security specific parameters. Further research and development is

required to evaluate the elimination of isakmd.conf.

4. Develop a Parsing Mechanism to Retrieve the Initial Security Policy
Database Entries

A parsing routine similar to one developed in this research is required to load the

appropriate security rules into the Security Policy Database (SPD). The challenge will be

to provide an intelligent parsing routine that can read a security policy file

(KeyNote/isakmpd.policy) and generate rules for the SPD. Currently, security policy

relevant rules are loaded independent of the parameterization mechanism by a script that

loads predefined policy rules into the SPD (see Chapter VI).

D. HARNESSING OPENBSD’S IPSEC MECHANISM CAPABILITIES

OpenBSD’s IPsec mechanism provides a wide range of flexible options involving

network security. This research was limited due to the objectives and the required focus

areas. Additional research is required to explore the other possible configurations and

application of the OpenBSD IPsec.

1. Behavior with all Possible Combinations of QoSS and non-QoSS
Peers

The research performed in this thesis was limited to a model involving a Quality

Of Security Service (QoSS) aware initiator and a non-QoSS aware respondent. To

account for the mechanism’s full capability and functionality, other combinations need to

be researched and tested. Specifically, non-QoSS aware initiator and a QoSS responder,

and both initiator and responder are QoSS aware.

182

2. Per-User / Per-Application Relationship Capability

The testing and implementation performed within this research involved two

specific applications: Telnet and Finger from a root access. In reality, an implemented

IPsec mechanism would be required to support a broader range of applications and

authorization levels of users. Some typical applications might include e-mail, video-

conferencing, Internet Remote Chat (IRC), and Web Portals. Further design, development

and testing needs to be performed, to support these other applications with the IPsec

mechanism.

3. Explore Proposal Caching Issues

Further research and testing is required to determine the security mechanism’s

QoSS behavior concerning the change of non-QoSS parameters. An example is the

expiration of a valid Security Association (SA) without a change to Network

Mode/Security Level. Will the SA expiration trigger a reconfiguration? Other examples

include testing behavior resulting from the non-QoSS initiators, QoSS aware initiators

and responders (both capable of initiated changes to QoSS and non-QoSS parameters),

and more frequent negotiations (resulting from shorter lifetimes).

4. Security Policy Editor

The current syntax and the potential complexity of QoSS and security parameter

combinations in KeyNote pose a challenge in usability for the human user interface

component used by security policy managers and implementers. A security policy editor

that translates the KeyNote syntax into an “easy-to-read” format is required. This editor

would enable an authorized user, to view and edit a security policy using a graphical user

interface.

5. Additional Network Configurations

IPsec is designed to be able to handle numerous network configurations

(discussed in the IPsec Architecture Chapter III section B.2.3). The research and

development performed and discussed in this thesis is based on the peer-to-peer

configuration. Therefore, further design, implementation, and testing will be required to

ensure proper functionality of IPsec mechanism and the parameterization functionality of

security parameters. Specifically additional research is required for Gateway-to-Gateway,

Gateway to IPsec-enabled hosts, and hosts behind IPsec ga teways.

183

6. IPV6 Addresses

In order to account for IPV6 addresses, further research, development and testing

will be required.

7. Distribution of KeyNote Policies

The ability to securely distribute keying information to peers in a Public Key

Infrastructure(PKI) environment is a crucial and challenging element of a secure network

environment. Likewise, the ability to securely distribute KeyNote policy to participating

peers or gateways is crucial to IPsec architecture. Research is required to explore

potential mechanisms to enable this functionality.

8. KeyNote Protection

Ensuring that only authorized users have access to and the ability to modify

KeyNote, is essential to the security policy mechanism of IPsec. An identification and

authentication mechanism is required to ensure only authorized users have access to

sensitive IPsec files and applications. A range of access may also be desired. For

example, a user may have read-only permission to the security policy file, while the

security manager will have read-write permissions.

9. Secure Dissemination & Storage of QoSS Parameters' Values

To effectively employ QoSS parameters, a method of secure storage and

dissemination across a network is required. Vulnerabilities and threats posed by Denial of

Service (DoS) attacks, and packet capturing and modification need to be examined.

10. IPsec Costing Issues

As with any security system, methods for calculating system resource costs

related to IPsec choices and connections are required. To fully implement the QoSS

model, system managers need measurement tools to be able to gauge resource costs per

security requirement to properly govern the IPsec mechanism.

11. Graphical User Interface

The current implementation of OpenBSD IPsec is command-line driven. To

provide for easier human computer interaction , a graphical user interface (GUI) that is

embedded into the mechanism would be helpful.

184

E. CONCLUSION

In this chapter, I summarized the research performed on the paramertization of

IPsec in this thesis and discussed future areas on research in OpenBSD IPsec.

185

APPENDIX A. CONF.C

The following is code added to /usr/src/sbin/isakmpd/conf.c:

/**
*
* Structure: suite_struct
*
* This structure is used to stored security proposal
* information.
*
**

struct suite_struct {

 char * suite_name;
 char * suite_protocol;
 char * suite_transform;
 char * protocol_id;
 char * transform_id;
 char * encapsulation_mode;
 char * group_description;
 char * authentication_algorithm;
 char * life;
 char * life_type;
 char * life_duration;
 char * esp;
 char * ah;
 char * esp_enc_alg;
 char * esp_auth_alg;
 char * ah_auth_alg;
 char * pfs;
 char * key_length;
 int copy_flag;
};

/**
*
* Structure: dynamic_packet
*
* This structure is used to stored dynamic parameter
* data, including dynamic parameter name, assignment symbol
* and value.
*
**

struct dynamic_packet {

 char* title;
 char* symbol;
 char* value;
};

186

// The following are function prototypes added to conf.c to implement
// dynamic parameterization.

void conf_kn_parse(int);
int add_para_values(char**,struct suite_struct *,struct suite_struct*,
int);
char * convert_to_uppercase(char*);
void parse_selection_parameter(char*,int*,char*,char*,char*,int*,
int,int *);
void parse_ipsec_parameter(char*,int*,char*,char**,int*);
int DNF_parse(char **, char*, int*, int, struct suite_struct *, struct
dynamic_packet *, int,struct suite_struct*, int);
void parse_ipsec_para_tag(char*,int*,char*,char**,int,int*);
void life_seconds_translation(char**,char**,char**);
void life_kilobytes_translation(char**,char**,char**);
void group_description_translation(char**);
int test_suite_structure(struct suite_struct *, int);
void send_to_conf_set(int,char*,char*,struct suite_struct *,int, struct
suite_struct *);
void load_default_sa();
void test_print_suite_list(struct suite_struct *, int);
void test_conf_get_str();
int duplicate_sa (struct suite_struct *, int,struct suite_struct *);
void test_print_dynamic_packet(struct dynamic_packet *, int);
void test_print_suite_struct(struct suite_struct *);
int dynamic_package_verification(char *, int *, int, struct
dynamic_packet *, int,int);
struct suite_struct * struct_initialization(struct suite_struct *);
struct suite_struct * initialize_default_suite_profile(struct
suite_struct *);
struct dynamic_packet* package_dynamic_parameters(int *);
int verify_parameter(char *, int *, char *, char *,int);
void advance_to_end_DNF(char*,int *,int);

/**
*
* Function: package_dynamic_parameters()This function reads a file that
* contains the current inputs of dynamic parameters such as
* Network Mode and Security Level. Initializes an array of
* structures that will dynamically grow as required. Loads the
* file input into the array of struct.
*
* - Input:
* - int * package_counter - used to determine the size of the
* struct array
*
*
* - Output:
* - struct dynamic_packet * - pointer to an array of
* dynamic_packet structure
*
*
**/

struct dynamic_packet * package_dynamic_parameters(int

187

*package_counter) {

 int array_size = 10 ; // chosen as average case for struct size

 struct dynamic_packet * package; // pointer to array of struct

 // strings used to read from file
 char * title = (char*)malloc(20);
 char * symbol= (char*)malloc(20);
 char * value = (char*)malloc(20);

 // used for file IO
 FILE * pifp;
 int file_status=0;

 (*package_counter) = 0; // initialize the array size to zero

 // initialize the pointer to an array size of array_size

 package = (struct dynamic_packet *)malloc(sizeof(struct
dynamic_packet)*array_size);

 // open file to read in dynamic parameters
 // check for errors in openning the file

 if ((pifp = fopen("/usr/src/sbin/isakmpd/dynamic_parameters",
"r"))== NULL) {
 // error openning the file

 LOG_DBG ((LOG_POLICY, 40, "ERROR OPENNING FILE %d",errno));

 }
 else { // file was successfully openned

 // do-while loop to read in data until EOF reached

 do {

 // read in from the file expecting the following syntax:
 // title symbol value

 file_status = fscanf(pifp, "%s%s%s", title, symbol, value);

 LOG_DBG ((LOG_POLICY, 40, "Just read from file....",""));
 LOG_DBG ((LOG_POLICY, 40, "Title: %s Symbol: %s Value: %s",
 title, symbol, value));

 // check for reading errors...

 if (file_status == 0) {

 // reading error occurred

 LOG_DBG ((LOG_POLICY, 40, "error reading from the
file....",""));
 }

188

 // check for EOF...

 else if (file_status == EOF) {

 // EOF reached

 LOG_DBG ((LOG_POLICY, 40, "end of file....",""));
 }

 // otherwise... read operation successful

 else {

 // create new struct space for dynamic parameters and
 // assign values from file to struct

 package[(*package_counter)].title = strdup(title);
 package[(*package_counter)].symbol = strdup(symbol);
 package[(*package_counter)].value = strdup(value);

 // increment package counter array of struct
 (*package_counter)++;

 // dynamic resize array if more memory is required

 if ((*package_counter) == array_size) {

 array_size+=10; // grow array in increments of 10

 package = (struct dynamic_packet
*)realloc(package,sizeof(struct dynamic_packet)*array_size);
 }
 }
 }
 while ((file_status != 0) && (file_status !=EOF));

 fclose(pifp); // close file

 test_print_dynamic_packet(package,*package_counter);

 }

 // free memory
 free(title);
 free(symbol);
 free(value);
 // free(pifp);

 return (package);

}

/**
*
*

189

* test_print_dynamic_packet()-This function displays all information in
* the array of dynamic_packet struct.
*
* - input:
* - struct dynamic_packet * packet - array of struct
* - int package_counter - used for the size of the struct
* array
* - output: void.
*
*
**/

void test_print_dynamic_packet(struct dynamic_packet *packet, int
packet_counter){

 int counter;

 for (counter = 0; counter < packet_counter; counter++) {

 LOG_DBG ((LOG_POLICY, 40, "Packet: %i",counter));
 LOG_DBG ((LOG_POLICY, 40, "Title: %s",packet[counter].title));
 LOG_DBG ((LOG_POLICY, 40, "Symbol: %s ",packet[counter].symbol));
 LOG_DBG ((LOG_POLICY, 40, "Value: %s",packet[counter].value));

 }

}

/**
*
*
* Function: conf_kn_parse()function called to activate the DNF
security proposal
* parsing mechanism.
*
*
* - Input:
* - int trans - used for the transaction number for
* sequential processing.
* - Output: void.
*
**/

void conf_kn_parse(int trans) {

 char *suite_title; // used for default phase 2 title
 char *suite; // used to hold constructed suites
 char *namekn; // used to hold name of keynote file
 char *buffer_kn; // used to hold contents of keynote file
 char *buff_temp; // used to traverse keynote file

 struct stat stkn; // used to determine the size of the file
 off_t szkn;
 int fdkn;

190

 int not_done=1;
 int not_found=1;
 char * section;
 int buff_temp_counter=0;
 int buff_temp_end;
 int SA_counter = 0;
 int suite_list_size = 2;

 struct dynamic_packet *package;
 int package_size=0;

 struct suite_struct * suite_list;
 struct suite_struct * default_suite_profile;

 // Initialize the array of structures used to hold parsed security
 // proposal information.

 suite_list = (struct suite_struct *)malloc(sizeof(struct
suite_struct)*suite_list_size);

 // Initalizing the default suite structure

 default_suite_profile = (struct suite_struct*) malloc (sizeof(struct
suite_struct));

 section = (char*) malloc (100);
 suite_title = (char *) malloc(100);
 suite = NULL; //(char *) malloc(100);
 namekn = (char *) malloc(100);

 default_suite_profile =
initialize_default_suite_profile(default_suite_profile);

 suite_title = strcpy (suite_title,"Default-Phase-2-Suite");

 namekn = strcpy (namekn,"/etc/isakmpd/keynotednffinal.policy");

 // call function to retireve dynamic_parameters and load them into
struct

 package = package_dynamic_parameters(&package_size);

 if ((fdkn = open(namekn, O_RDONLY, 0))== -1) {

 LOG_DBG ((LOG_POLICY, 40, "ERROR OPENNING FILE %d",errno));

 }
 else {

 LOG_DBG ((LOG_POLICY, 40, "OPENED KEYNOTE FILE",""));

 }

 if (stat (namekn, &stkn) == -1)
 {
 LOG_DBG ((LOG_POLICY,40, "STAT FAILED %s", namekn));

191

 }

 // allocate memory for file buffer
 szkn = stkn.st_size;
 buffer_kn = (char *) malloc(szkn);
 buff_temp = (char*) malloc(szkn);

 // read in file into buffer
 if (read(fdkn, buffer_kn, szkn) !=szkn) {

 LOG_DBG ((LOG_POLICY, 40, "ERROR READING KEYNOTE FILE",""));

 }

 close(fdkn);

 buff_temp = buffer_kn;
 buff_temp_end = szkn-1;

 not_found=1;

 // search thru and find the next open parathesis

 while (buff_temp_counter <= buff_temp_end) {

 if (buff_temp[buff_temp_counter] == '(') {

 if (DNF_parse(&suite, buff_temp, &buff_temp_counter, szkn,
&suite_list[SA_counter], package,package_size, suite_list, SA_counter)
== 1) {

 SA_counter++;

 test_print_suite_list(suite_list,SA_counter);

 }

 else {
 not_found = 0;
 }// end else

 } // end of if

 buff_temp_counter++;

 if (buff_temp_counter <= buff_temp_end) {

 if (SA_counter == suite_list_size) {

 suite_list_size+=2; // grow array in increments of 2

 test_print_suite_list(suite_list,SA_counter);

 suite_list = (struct suite_struct

192

*)realloc(suite_list,sizeof(struct suite_struct)*suite_list_size);

 }
 }

 }// end while

 // if no matches found...

 if (SA_counter == 0) {

 LOG_DBG ((LOG_POLICY, 40,"No matches were found.... No SA's
Loaded from Keynote DNF",""));
 LOG_DBG((LOG_POLICY, 40, "Calling Load Default SA function.."));
 load_default_sa(default_suite_profile);
 }

 else { // matches found...

 LOG_DBG ((LOG_POLICY, 40,"%i Matches were found.... Matching SA's
Loaded from Keynote DNF",SA_counter));

 test_print_suite_list(suite_list,SA_counter);

 send_to_conf_set(trans,suite_title,suite,suite_list,SA_counter,
default_suite_profile);

 test_conf_get_str();
 }

}

/**
*
* Function: test_print_suite_list()- displays all security
* proposals that currently exist in the array of
* structures. This function can be used for error checking
* and debugging.
* - Input:
* - struct suite_struct *suite_list – pointer to the array
* of security proposals.
* - int struct_size – number of current structures in the
* array.
*
* - Output: void.
*
**/

void test_print_suite_list(struct suite_struct *suite_list, int
struct_size) {

 int count = 0;

193

 LOG_DBG((LOG_POLICY, 40,"TEST PRINT SUITE LIST",""));
 LOG_DBG((LOG_POLICY, 40,"Struct Size:%i ",struct_size));

 for (count = 0; count < struct_size; count++) {

 LOG_DBG((LOG_POLICY,40,"STRUCT NODE: %i",count));
 LOG_DBG ((LOG_POLICY, 40, "SUITE
NAME:%s",suite_list[count].suite_name));
 //LOG_DBG ((LOG_POLICY, 40, "SUITE NAME
size:%i",strlen(suite_list[count].suite_name)));

 //LOG_DBG((LOG_POLICY,40,"Pointer address of suite_nanme:
%i",suite_list[count].suite_name));

 LOG_DBG ((LOG_POLICY, 40, "SUITE
PROTOCOL:%s",suite_list[count].suite_protocol));
 LOG_DBG ((LOG_POLICY, 40, "SUITE
TRANSFORM:%s",suite_list[count].suite_transform));
 LOG_DBG ((LOG_POLICY, 40, "SUITE TRANSFORM
ID:%s",suite_list[count].transform_id));
 LOG_DBG ((LOG_POLICY, 40, "SUITE ENCAPSULATION
MODE:%s",suite_list[count].encapsulation_mode));
 LOG_DBG ((LOG_POLICY, 40, "SUITE GROUP
DESCRIPTION:%s",suite_list[count].group_description));
 LOG_DBG ((LOG_POLICY, 40, "SUITE AUTHENTICATION
ALGORITHM:%s",suite_list[count].authentication_algorithm));
 LOG_DBG ((LOG_POLICY, 40, "SUITE LIFE:%s",suite_list[count].life));
 LOG_DBG ((LOG_POLICY, 40, "LIFE
TYPE:%s",suite_list[count].life_type));
 LOG_DBG ((LOG_POLICY, 40, "LIFE
DURATION:%s",suite_list[count].life_duration));
 LOG_DBG ((LOG_POLICY, 40, "COPY
FLAG:%i",suite_list[count].copy_flag));

 }
}

/**
*
* Function: test_print_suite_struct()- displays security
* proposal info in a suite structure. This function can be
* used for error checking and debugging.
* - Input:
* - struct suite_struct *suite_list – pointer to the
* security proposal structure.
*
* - Output: void.
*
**/

void test_print_suite_struct(struct suite_struct *suite) {

 LOG_DBG((LOG_POLICY, 40,"TEST PRINT SUITE STRUCT",""));
 LOG_DBG ((LOG_POLICY, 40, "SUITE NAME:%s",suite->suite_name));

194

 LOG_DBG ((LOG_POLICY, 40, "SUITE PROTOCOL:%s",suite-
>suite_protocol));
 LOG_DBG ((LOG_POLICY, 40, "SUITE TRANSFORM:%s",suite-
>suite_transform));
 LOG_DBG ((LOG_POLICY, 40, "SUITE TRANSFORM ID:%s",suite-
>transform_id));
 LOG_DBG ((LOG_POLICY, 40, "SUITE ENCAPSULATION MODE:%s",suite-
>encapsulation_mode));
 LOG_DBG ((LOG_POLICY, 40, "SUITE GROUP DESCRIPTION:%s",suite-
>group_description));
 LOG_DBG ((LOG_POLICY, 40, "SUITE AUTHENTICATION ALGORITHM:%s",suite-
>authentication_algorithm));
 LOG_DBG ((LOG_POLICY, 40, "SUITE LIFE:%s",suite->life));
 LOG_DBG ((LOG_POLICY, 40, "LIFE TYPE:%s",suite->life_type));
 LOG_DBG ((LOG_POLICY, 40, "LIFE DURATION:%s",suite->life_duration));
 LOG_DBG ((LOG_POLICY, 40, "COPY FLAG:%i",suite->copy_flag));

}

int test_suite_structure(struct suite_struct * suite_profile,int
struct_size) {
 int result = 1;
 int count;
 for (count = 0; count < struct_size; count++) {

 if (suite_profile[count].copy_flag == 1) {

 LOG_DBG ((LOG_POLICY, 40, "copy flag set...skipping suite
test",""));

 }

 else {

 LOG_DBG ((LOG_POLICY, 40, "copy flag not set...performing suit
test",""));

 if (suite_profile[count].suite_name == NULL) {

 LOG_DBG ((LOG_POLICY, 40, "suite_name is empty on struct #:
%i",count));
 LOG_DBG ((LOG_POLICY, 40, "entry required... suite_struct test
failed..",""));
 return(0);
 }

 if (suite_profile[count].protocol_id == NULL) {
 LOG_DBG ((LOG_POLICY, 40, "protocol_id is empty on struct #:
%i",count));
 LOG_DBG ((LOG_POLICY, 40, "entry required... suite_struct test

195

failed..",""));
 return(0);

 }

 if (suite_profile[count].transform_id == NULL) {
 LOG_DBG ((LOG_POLICY, 40, "transform_id is empty on struct #:
%i",count));
 LOG_DBG ((LOG_POLICY, 40, "entry required... suite_struct test
failed..",""));
 return(0);

 }

 }
 }
 return(result);

}

/**
*
* Function: int duplicate_sa ()– compares the security proposals
* list with new security proposal for duplicates.
* - Input:
* - struct suite_struct * suite_list – pointer to a security
* proposal list/array.
* - int suite_count – number of security proposal in the
* array.
* - struct suite_struct *suite_profile – pointer to the new
* security proposal.
* - Output:
* - Int – used as Boolean flag. Returns 1 (true) if new
* security proposal is a duplicate. Returns false if new
* security proposal is not a duplicate.
*
**/

int duplicate_sa (struct suite_struct * suite_list, int
suite_count,struct suite_struct *suite_profile) {
 int count1=0;
 int true = 1;
 int false = 0;

 for (count1 = 0; count1 < suite_count; count1++) {

 if (((suite_list[count1].ah_auth_alg==NULL) && (suite_profile-
>ah_auth_alg==NULL)) || (((suite_list[count1].ah_auth_alg!=NULL) &&
(suite_profile->ah_auth_alg!=NULL)) &&

196

(strcmp(suite_list[count1].ah_auth_alg,suite_profile->ah_auth_alg) ==
0))) {

 if (((suite_list[count1].esp_auth_alg==NULL) && (suite_profile-
>esp_auth_alg==NULL)) || (((suite_list[count1].esp_auth_alg!=NULL) &&
(suite_profile->esp_auth_alg!=NULL)) &&
(strcmp(suite_list[count1].esp_auth_alg,suite_profile->esp_auth_alg) ==
0))) {

 if (((suite_list[count1].esp_enc_alg==NULL) && (suite_profile-
>esp_enc_alg==NULL)) || (((suite_list[count1].esp_enc_alg!=NULL) &&
(suite_profile->esp_enc_alg!=NULL)) &&
(strcmp(suite_list[count1].esp_enc_alg,suite_profile->esp_enc_alg) ==
0))) {

 if (((suite_list[count1].encapsulation_mode==NULL) &&
(suite_profile->encapsulation_mode==NULL)) ||
(((suite_list[count1].encapsulation_mode!=NULL) && (suite_profile-
>encapsulation_mode!=NULL)) &&
(strcmp(suite_list[count1].encapsulation_mode,suite_profile-
>encapsulation_mode) == 0))) {

 if (((suite_list[count1].group_description==NULL) &&
(suite_profile->group_description==NULL)) ||
(((suite_list[count1].group_description!=NULL) && (suite_profile-
>group_description!=NULL)) &&
(strcmp(suite_list[count1].group_description,suite_profile-
>group_description) == 0))) {

 if (((suite_list[count1].life==NULL) && (suite_profile-
>life==NULL)) || (((suite_list[count1].life!=NULL) && (suite_profile-
>life!=NULL)) && (strcmp(suite_list[count1].life,suite_profile->life)
== 0))) {

 if (((suite_list[count1].life_type==NULL) &&
(suite_profile->life_type==NULL)) ||
(((suite_list[count1].life_type!=NULL) && (suite_profile-
>life_type!=NULL)) &&
(strcmp(suite_list[count1].life_type,suite_profile->life_type) == 0)))
{

 if (((suite_list[count1].life_duration==NULL) &&
(suite_profile->life_duration==NULL)) ||
(((suite_list[count1].life_duration!=NULL) && (suite_profile-
>life_duration!=NULL)) &&
(strcmp(suite_list[count1].life_duration,suite_profile->life_duration)
== 0))) {

 if (((suite_list[count1].pfs==NULL) && (suite_profile-
>pfs==NULL)) || (((suite_list[count1].pfs!=NULL) && (suite_profile-
>pfs!=NULL)) && (strcmp(suite_list[count1].pfs,suite_profile->pfs) ==

197

0))) {

 if (((suite_list[count1].key_length==NULL) &&
(suite_profile->key_length==NULL)) ||
(((suite_list[count1].key_length!=NULL) && (suite_profile-
>key_length!=NULL)) &&
(strcmp(suite_list[count1].key_length,suite_profile->key_length) ==
0))) {

 suite_profile->copy_flag = 1;
 LOG_DBG ((LOG_POLICY, 40, "Match found setting
copy flag",""));
 return (true);

 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }

 return (false);
}

/***
*
* Function: send_to_conf_set() – this functions sends parsed
* information to conf_set in the correct syntax.
*
* - Input:
* - int trans – transaction number.
* - char * suite_title – holds title for tag defined in
* previous function.
* - char * suite – holds set of security proposals
* - struct suite_struct * suite_profile – points to the
* list/array of suite structures.
* - int struct_size – holds the size of the list.
* - Output: None.
*
**/

void send_to_conf_set(int trans,char * suite_title, char * suite,
struct suite_struct * suite_profile, int struct_size, struct
suite_struct * default_suite_profile) {

 char * section = (char *) malloc(100);
 char * title = (char *) malloc(100);
 int count =0;

198

 int tempsize = 0;

 char * temp1, *temp2, *temp3 = malloc(100);

 strcpy(section,"General");

 if (suite == NULL) {

 LOG_DBG ((LOG_POLICY, 40, "loading error: suite is null",""));

 LOG_DBG ((LOG_POLICY, 40, "Aborting suite struct load",""));

 LOG_DBG ((LOG_POLICY, 40, "loading default default suite
structure",""));

 load_default_sa(trans,section,suite_title,default_suite_profile);

 return;
 }

 else {

 LOG_DBG ((LOG_POLICY, 40, "Suite Set complete....continuing",""));
 LOG_DBG ((LOG_POLICY, 40, "Testing suite structures for min
requirements",""));

 if (test_suite_structure(suite_profile, struct_size) == 1) {

 LOG_DBG ((LOG_POLICY, 40, "Suite Structure has min required
entries... continuing loading process",""));

 }
 else {
 LOG_DBG ((LOG_POLICY, 40, "Suite Structure does not have min
requirements...",""));
 LOG_DBG ((LOG_POLICY,40, "Aborting suite struct load",""));
 LOG_DBG ((LOG_POLICY,40,"Loading default suite structure",""));

load_default_sa(trans,section,suite_title,default_suite_profile);

 return;
 }
 }

 LOG_DBG ((LOG_POLICY, 40, "Loading suite set into conf_set...",""));
 conf_set(trans, section, suite_title, suite,0,0);

 for (count = 0; count < struct_size; count++) {

 if (suite_profile[count].copy_flag == 0) {

 LOG_DBG ((LOG_POLICY, 40, "Loading suite#: %i into conf_set
...",count));

 LOG_DBG ((LOG_POLICY, 40, "Loading suite_protocol into conf_set
...",""));

199

 section = strcpy (section,suite_profile[count].suite_name);
 title = strcpy(title, "Protocols");

conf_set(trans,section,title,suite_profile[count].suite_protocol,0,0);

 LOG_DBG ((LOG_POLICY, 40, "Loading protocol_id into conf_set
...",""));

 section = strcpy (section,suite_profile[count].suite_protocol);
 title = strcpy(title, "PROTOCOL_ID");

 conf_set(trans,section,title,suite_profile[count].protocol_id,0,0);

 LOG_DBG ((LOG_POLICY, 40, "Loading suite_transform into conf_set
...",""));
 title = strcpy(title, "Transforms");

conf_set(trans,section,title,suite_profile[count].suite_transform,0,0);

 LOG_DBG ((LOG_POLICY, 40, "Loading transform_id into conf_set
...",""));
 section = strcpy (section,suite_profile[count].suite_transform);
 title = strcpy(title, "TRANSFORM_ID");

conf_set(trans,section,title,suite_profile[count].transform_id,0,0);

 LOG_DBG ((LOG_POLICY, 40, "Loading encapsulation_mode into conf_set
...",""));
 section = strcpy (section,suite_profile[count].suite_transform);
 title = strcpy(title, "ENCAPSULATION_MODE");

 if (suite_profile[count].encapsulation_mode == NULL) {

 LOG_DBG ((LOG_POLICY, 40, "loading error: encapsulation_mode is
null",""));

 LOG_DBG ((LOG_POLICY, 40, "loading default encapsulation
mode",""));
 LOG_DBG ((LOG_POLICY, 40, "default encapsulation mode:
%s",default_suite_profile->encapsulation_mode));
 conf_set(trans,section,title,default_suite_profile-
>encapsulation_mode,0,0);

 }

 else {

conf_set(trans,section,title,suite_profile[count].encapsulation_mode,0,
0);
 }

 LOG_DBG ((LOG_POLICY, 40, "Loading group_description into conf_set
...",""));
 section = strcpy (section,suite_profile[count].suite_transform);
 title = strcpy(title, "GROUP_DESCRIPTION");

200

 if (suite_profile[count].group_description == NULL) {

 LOG_DBG ((LOG_POLICY, 40, "loading error: group_description is
null",""));

 LOG_DBG ((LOG_POLICY, 40, "loading default
group_description",""));
 conf_set(trans,section,title,default_suite_profile-
>group_description,0,0);

 }

 else {

conf_set(trans,section,title,suite_profile[count].group_description,0,0
);
 }

 section = strcpy (section,suite_profile[count].suite_transform);
 title = strcpy(title, "AUTHENTICATION_ALGORITHM");

 if ((suite_profile[count].authentication_algorithm ==
NULL)&&(strcmp(suite_profile[count].protocol_id,"IPSEC_AH") == 0)) {

 LOG_DBG ((LOG_POLICY, 40, "loading error:
authentication_algorithm is null",""));
 LOG_DBG ((LOG_POLICY, 40, "AH SA... using transform_id to load
authentication algorithm",""));

 //LOG_DBG ((LOG_POLICY, 40, "loading default
authentication_algorithm",""));

conf_set(trans,section,title,strcat("HMAC_",default_suite_profile-
>authentication_algorithm),0,0);

 }

 else if ((suite_profile[count].authentication_algorithm ==
NULL)&&(strcmp(suite_profile[count].protocol_id,"IPSEC_ESP") == 0)) {

 LOG_DBG ((LOG_POLICY, 40, "no authentication algorithm found for
ESP suite...",""));
 LOG_DBG ((LOG_POLICY, 40, "Assuming no ESP authenctication
algorithm needed... no default loading..",""));

 }
 else {
 LOG_DBG ((LOG_POLICY, 40, "Loading authentication
algorithm...",""));

conf_set(trans,section,title,suite_profile[count].authentication_algori
thm,0,0);
 }

201

 section = strcpy (section,suite_profile[count].suite_transform);
 title = strcpy(title, "Life");

 if ((suite_profile[count].life ==
NULL)||(suite_profile[count].life_type ==
NULL)||(suite_profile[count].life_duration == NULL)) {

 LOG_DBG ((LOG_POLICY, 40, "loading error: 1 or more life time
parameters are null",""));

 LOG_DBG ((LOG_POLICY, 40, "loading default life
parameters",""));
 conf_set(trans,section,title,default_suite_profile->life,0,0);
 section = strcpy(section,default_suite_profile->life);
 title =strcpy(title, "LIFE_TYPE");
 conf_set(trans,section,title,default_suite_profile-
>life_type,0,0);
 title = strcpy(title,"LIFE_DURATION");
 conf_set(trans,section,title,default_suite_profile-
>life_duration,0,0);
 }

 else {
 LOG_DBG ((LOG_POLICY, 40, "loading life parameters...",""));
 LOG_DBG ((LOG_POLICY, 40, "Life title....",""));
 conf_set(trans,section,title,suite_profile[count].life,0,0);
 section = strcpy(section,suite_profile[count].life);
 title =strcpy(title, "LIFE_TYPE");
 LOG_DBG ((LOG_POLICY, 40, "Life_Type....",""));
 conf_set(trans,section,title,suite_profile[count].life_type,0,0);
 title = strcpy(title,"LIFE_DURATION");
 LOG_DBG ((LOG_POLICY, 40, "Life_Duration....",""));

conf_set(trans,section,title,suite_profile[count].life_duration,0,0);

 }
 }
 else {
 LOG_DBG ((LOG_POLICY, 40, "Skipping a duplicate sa in
send_to_conf_set",""));
 }
 }
}

// Load conf_set with default value

/**
*
* - Function: void load_default_sa()– loads default security proposal
* into conf_set().
*
* - Input:
* - int trans – transaction number required for conf_set()
* - char * section – character string defined in calling

202

* function

* - char * title – character string defined in calling
* function
* - struct suite_struct* default_suite_profile – default
* suite structure for the default security proposal
* parameters.
* - Output: void.
*
**/

void load_default_sa(int trans,char * section, char * title,struct
suite_struct* default_suite_profile) {

 LOG_DBG ((LOG_POLICY, 40, "Loading default sa's...",""));

 conf_set(trans, section, title, default_suite_profile-
>suite_name,0,0);

 section = strcpy (section,default_suite_profile->suite_name);
 title = strcpy(title, "Protocols");
 conf_set(trans,default_suite_profile-
>suite_name,title,default_suite_profile->suite_protocol,0,0);

 section = strcpy (section,default_suite_profile->suite_protocol);
 title = strcpy(title, "PROTOCOL_ID");
 conf_set(trans,section,title,default_suite_profile->protocol_id,0,0);

 title = strcpy(title, "Transforms");
 conf_set(trans,section,title,default_suite_profile-
>suite_transform,0,0);

 section = strcpy (section,default_suite_profile->suite_transform);
 title = strcpy(title, "TRANSFORM_ID");
 conf_set(trans,section,title,default_suite_profile-
>transform_id,0,0);
 section = strcpy (section,default_suite_profile->suite_transform);
 title = strcpy(title, "ENCAPSULATION_MODE");
 conf_set(trans,section,title,default_suite_profile-
>encapsulation_mode,0,0);
 section = strcpy (section,default_suite_profile->suite_transform);
 title = strcpy(title, "GROUP_DESCRIPTION");
 conf_set(trans,section,title,default_suite_profile-
>group_description,0,0);

 section = strcpy (section,default_suite_profile->suite_transform);
 title = strcpy(title, "AUTHENTICATION_ALGORITHM");
 conf_set(trans,section,title,default_suite_profile-
>authentication_algorithm,0,0);

 section = strcpy (section,default_suite_profile->suite_transform);
 title = strcpy(title, "Life");
 conf_set(trans,section,title,default_suite_profile->life,0,0);

 section = strcpy(section,default_suite_profile->life);

203

 title =strcpy(title, "LIFE_TYPE");
 conf_set(trans,section,title,default_suite_profile->life_type,0,0);

 title = strcpy(title,"LIFE_DURATION");
 conf_set(trans,section,title,default_suite_profile-
>life_duration,0,0);

 }

/**
*
* Function: struct suite_struct* struct_initialization()- used to
* initialize each suite structure.
*
* - Input: - struct suite_struct * suite_profile – holds the
* pointer to suite structure.
* - Output: - returns the newly initialized structure.
*
**/

struct suite_struct * struct_initialization(struct suite_struct *
suite_profile) {

 // initialize struct
 suite_profile->suite_name = NULL;
 suite_profile->suite_protocol= NULL;
 suite_profile->suite_transform= NULL;
 suite_profile->transform_id= NULL;
 suite_profile->protocol_id= NULL;
 suite_profile->encapsulation_mode= NULL;
 suite_profile->group_description= NULL;
 suite_profile->authentication_algorithm= NULL;
 suite_profile->life= NULL;
 suite_profile->life_type= NULL;
 suite_profile->life_duration= NULL;
 suite_profile->esp = NULL;
 suite_profile->ah = NULL;
 suite_profile->esp_enc_alg = NULL;
 suite_profile->esp_auth_alg = NULL;
 suite_profile->ah_auth_alg = NULL;
 suite_profile->pfs = NULL;
 suite_profile->key_length = NULL;
 suite_profile->copy_flag = 0;

 return (suite_profile);

}

/***
 *
 * Struct suite_struct * initialize_default_suite()
 *
 * Initializes default suite in the event of failure to properly
 * load a security proposal.
 *
 **/

204

struct suite_struct * initialize_default_suite_profile(struct
suite_struct *temp_ss) {

 // struct suite_struct temp_ss;
 // initialize struct

 LOG_DBG ((LOG_POLICY, 40, "in initialize_default_suite_profile",""));
 temp_ss->suite_name = strdup("QM-ESP-AES-SHA-PFS-SUITE");
 LOG_DBG ((LOG_POLICY, 40, "test1",""));
 temp_ss->suite_protocol= strdup("QM-ESP-AES-SHA-PFS");
 temp_ss->suite_transform= strdup("QM-ESP-AES-SHA-PFS-XF");
 temp_ss->transform_id= strdup("AES");
 LOG_DBG ((LOG_POLICY, 40, "test2",""));
 temp_ss->protocol_id= strdup("IPSEC_ESP");
 temp_ss->encapsulation_mode= strdup("TUNNEL");
 temp_ss->group_description= strdup("MODP_1024");
 temp_ss->authentication_algorithm= strdup("HMAC_SHA");
 LOG_DBG ((LOG_POLICY, 40, "test3",""));
 temp_ss->life= strdup("LIFE_3600_SECS");
 temp_ss->life_type= strdup("SECONDS");
 temp_ss->life_duration= strdup("3600,1800:7200");
 temp_ss->copy_flag=0;
 return (temp_ss);

}

/***
*
* Function: int dynamic_package_verification() - used to check
* dynamic parameters of DNF security proposal assertions.
* - Input:
* - char * buff_temp – character string/buffer used to hold
* the isakmpd.conf/KeyNote file being parsed.
* - int *buff_temp_counter – index used for parsing the
* buff_temp.
* - int buff_temp_end – index to last character of buffer
* used to check for end-of-file (EOF) condition.
* - struct dynamic_packet * package – structure that holds
* current value of the dynamic parameters.
* - int package_size – size of array of dynamic_packet
* structure.
* - int szkn – size of KeyNote file.

* - Output:
* - int – used as a Boolean flag to indicate if DNF security
* proposal assertion dynamic parameters match. Return 0
* (false). Return 1 (true).
*
**/

int dynamic_package_verification(char * buff_temp, int
*buff_temp_counter, int buff_temp_end, struct dynamic_packet * package,
int package_size, int szkn) {

 int temp_buff = *buff_temp_counter;

205

 int loop_counter;

 // used to verify that all packages parameters exist in expression
 int package_counter_check = 0;

 int not_done = 1;

 int result = 0;

 int dynamic_test_counter = 0; // used to count matches

 char * testprint = (char*)malloc(buff_temp_end + 50);

 //loop through dynamic package array to check for matching parameters

 if ((buff_temp_end - (temp_buff)) > 0) {

 testprint =
strncpy(testprint,&buff_temp[*buff_temp_counter],(buff_temp_end -
temp_buff));

 }
 else LOG_DBG ((LOG_POLICY, 40, "Here is our problem",""));

 for (loop_counter = 0;loop_counter < package_size; loop_counter++)
 {
 // reseting temp pointer for scan

 temp_buff = *buff_temp_counter;

 not_done = 1; // reset for while loop

 while (not_done==1) {

 // check to see if first letter matching

 if ((buff_temp[temp_buff] == package[loop_counter].title[0])
&&((temp_buff + strlen(package[loop_counter].title)) < szkn)) {

 // if result is false not a match return false...

 result =
verify_parameter(buff_temp,&temp_buff,package[loop_counter].title,
package[loop_counter].value,buff_temp_end);

 // if dynamic parameter title found but value does not match
 //advance to next DNF expression and exit

 if (result == 0) {

advance_to_end_DNF(buff_temp,buff_temp_counter,buff_temp_end);

 return (0); // return false
 }

206

 // if dynamic parameter title found and value matches...MATCH!

 if (result == 1) {

 package_counter_check++;
 not_done =0; // set flag to exit while loop
 }

 // title match not found keeping looking...

 if (result == 2) {

 }

 }

 if (buff_temp[temp_buff] == '|') {

 not_done = 0;

 }

 else {

 // Check to see if at end of file
 if (*buff_temp_counter >= szkn) {

 not_done = 0;

 }

 else {

 temp_buff++;

 }
 }
 }

 } // end of for loop

 // if counter match all conditions met return true

 if (package_counter_check == package_size) {

 LOG_DBG ((LOG_POLICY, 40, "All conditions met.... returning
true",""));

 return (1); // return true;

 }

 else { // not all conditions met....

207

 LOG_DBG ((LOG_POLICY, 40, "Not all conditions met....advancing
book mark and return false...",""));

 //advance pointer to next expression

 advance_to_end_DNF(buff_temp,&temp_buff,buff_temp_end);

 // set actual buffer place holder to advanced marker
 (*buff_temp_counter) = temp_buff;

 // return false;
 return (0);
 }
}

/**
*
* Function: int DNF_parse()– This function parses each security
* proposal found.
* - Input:
* - Note: That in order to facilitate dynamic memory
* use, pointer to pointer coding syntax at times
* was required. By having a pointer to a pointer,
* memory created in a function will still be
* resident/within scope after returning from the
* function.
* - char **suite – holds the set of security proposals.
* Pointer to a pointer used to for dynamic memory
* creation.
* - char *buff_temp – string buffer holding the DNF
* file.
* - int* buff_temp_counter – location of parsing index.
* Pointer to integer is used to allow for pass by
* reference.
* - int szkn – size of file/string buffer.
* - struct suite_struct *suite_profile – pointer to
* suite structure.
* - Outputs:
* - integer
* – returns 1 (false) if parse routine
* successful.
* - returns 0 (false) otherwise.
*
***/

int DNF_parse(char **suite, char *buff_temp, int * buff_temp_counter,
int szkn, struct suite_struct *suite_profile, struct dynamic_packet *
package, int package_size, struct suite_struct *suite_list, int
SA_counter) {

 int success =0;
 char *temp_name, *temp_value;
 int not_done = 1;
 //int para_counter=0;
 int buff_temp_end = szkn -1;

208

 int temp_size=0;
 int completed = 1;// if dynamic parameters are met
 temp_name = (char*)malloc(100);
 temp_value =(char*)malloc(100);

 suite_profile = struct_initialization(suite_profile);

 LOG_DBG ((LOG_POLICY, 40, "ENTERING DNF PARSE",""));

 // check expression dynamic parameter matching

 // if false... return

 if (dynamic_package_verification(buff_temp, buff_temp_counter,
buff_temp_end, package, package_size,szkn)==0) {

 return (0) ;

 }

 else {

 LOG_DBG ((LOG_POLICY, 40, "Dynamic package conditions were
met!...preceding to perform parsing ...",""));

 }

 while (not_done == 1) {

 // Check for ESP

 if ((buff_temp[*buff_temp_counter] == 'e')&&((*buff_temp_counter +
strlen("esp_present")) < szkn)) {

 temp_name = "esp_present";

 temp_size = 3;
 success=0;

parse_ipsec_para_tag(buff_temp,buff_temp_counter,temp_name,&suite_profi
le->esp,temp_size, &success);

 // if successful load esp protocol into structure

 if (success == 1) {

 suite_profile->protocol_id = strdup("IPSEC_ESP");
 }
 }

209

 // Check for ESP ENC ALG

 if ((buff_temp[*buff_temp_counter] == 'e')&&((*buff_temp_counter +
strlen("esp_enc_alg")) < szkn)) {

 temp_name = "esp_enc_alg";
 success=0;

 LOG_DBG ((LOG_POLICY, 40, "CHECKING FOR ESP_ENC_ALG",""));

parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&(suite_pro
file->esp_enc_alg), &success);

 // if successful copy appropriate esp enc alg to structure
 if (success == 1) {

 suite_profile->transform_id = strdup(suite_profile->esp_enc_alg);

 }

 }

 // Check for ESP AUTH ALG

 if ((buff_temp[*buff_temp_counter] == 'e')&&(*buff_temp_counter +
strlen("esp_auth_alg") < szkn)) {

 temp_name ="esp_auth_alg";
 success=0;

parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&suite_prof
ile->authentication_algorithm,&success);

 // if successful copy appropriate esp auth alg to structure
 if (success == 1) {
 char * temp_holder = (char*)malloc(20);
 char * temp_holder2 = NULL;//(char*) malloc(20);

 // check for HMAC- header on transform_id
 if (suite_profile->authentication_algorithm[0] == 'H') {

 temp_holder2 = strchr(suite_profile-
>authentication_algorithm,'-');
 //suite_profile->authentication_algorithm[4] == '_';
 (*temp_holder2) = '_';
 temp_holder2++;
 suite_profile->transform_id = strdup(temp_holder2);
 suite_profile->esp_auth_alg = strdup (temp_holder2);

 }
 else {

 temp_holder = strcpy(temp_holder,"HMAC_");
 suite_profile->esp_auth_alg = strdup(suite_profile-
>authentication_algorithm);
 suite_profile->transform_id = strdup(suite_profile-

210

>authentication_algorithm);
 temp_holder = strcat(temp_holder,suite_profile-
>authentication_algorithm);
 free(suite_profile->authentication_algorithm);

 suite_profile->authentication_algorithm = strdup(temp_holder);

 }

 free(temp_holder);
 free(temp_holder2);
 }

 }

 // Check for AH

 if ((buff_temp[*buff_temp_counter] == 'a')&&((*buff_temp_counter +
strlen("ah_present")) < szkn)) {

 temp_name = "ah_present";
 success=0;
 temp_size = 2;

parse_ipsec_para_tag(buff_temp,buff_temp_counter,temp_name,&suite_profi
le->ah, temp_size,&success);

 // if successful load ah protocol into structure

 if (success == 1) {

 suite_profile->protocol_id = strdup("IPSEC_AH");
 }

 }

 // Check for PFS

 if ((buff_temp[*buff_temp_counter] == 'p')&&((*buff_temp_counter +
strlen("pfs")) < szkn)) {

 temp_name = "pfs";
 success=0;
 temp_size = 3;

parse_ipsec_para_tag(buff_temp,buff_temp_counter,temp_name,&suite_profi
le->pfs, temp_size,&success);

 if (success == 1) {
 LOG_DBG ((LOG_POLICY, 40, "pfs= %s",suite_profile->pfs));
 }

211

 }

 // check for ah_auth_alg

 if ((buff_temp[*buff_temp_counter] == 'a')&&((*buff_temp_counter +
strlen("ah_auth_alg")) < szkn)) {

 temp_name = "ah_auth_alg";
 success=0;

 parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,
 &suite_profile->authentication_algorithm, &success);

 // if successful copy appropriate ah auth alg to structure
 if (success == 1) {
 char * temp_holder = (char*)malloc(20);
 char * temp_holder2 = NULL;//(char*) malloc(20);

 // check for HMAC- header on transform_id
 if (suite_profile->authentication_algorithm[0] == 'H') {
 //suite_profile->authentication_algorithm[4] = '_';
 //temp_holder2 = strchr(suite_profile-
>authentication_algorithm,'_');
 //temp_holder2++;
 temp_holder2 = strchr(suite_profile-
>authentication_algorithm,'-');
 (*temp_holder2) = '_';
 temp_holder2++;
 suite_profile->transform_id = strdup(temp_holder2);

 suite_profile->ah_auth_alg = strdup (temp_holder2);

 LOG_DBG ((LOG_POLICY, 40, "Result of HMAC check/fix trans: %s
alg: %s",suite_profile->transform_id, suite_profile-
>authentication_algorithm));

 }
 else {

 temp_holder = strcpy(temp_holder,"HMAC_");
 suite_profile->ah_auth_alg = strdup(suite_profile-
>authentication_algorithm);
 suite_profile->transform_id = strdup(suite_profile-
>authentication_algorithm);
 temp_holder = strcat(temp_holder,suite_profile-
>authentication_algorithm);
 free(suite_profile->authentication_algorithm);

 suite_profile->authentication_algorithm = strdup(temp_holder);

 }

 free(temp_holder);
 }

 }

212

 // check for esp_group_desc

 if ((buff_temp[*buff_temp_counter] == 'e')&&((*buff_temp_counter +
strlen("esp_group_desc")) < szkn)) {

 char * temp_holder = NULL;//(char *) malloc(20);
 temp_name = "esp_group_desc";
 success=0;
 parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&tem
p_holder, &success);

 // if successful load esp_group_desc into structure

 if (success == 1) {

 suite_profile->group_description = strdup(temp_holder);
 group_description_translation(&suite_profile-
>group_description);
 free(temp_holder);
 }

 }

 // check for ah_group_desc

 if ((buff_temp[*buff_temp_counter] == 'a')&&((*buff_temp_counter +
strlen("ah_group_desc")) < szkn)) {

 char * temp_holder=NULL; //(char*)malloc(100);
 temp_name = "ah_group_desc";
 success=0;

parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&temp_holde
r,&success);

 // if successful load ah_group_desc into structure

 if (success == 1) {

 suite_profile->group_description = strdup(temp_holder);
 group_description_translation(&suite_profile-
>group_description);
 free(temp_holder);

 }

 }

 // check for esp_encapsulation

 if ((buff_temp[*buff_temp_counter] == 'e')&&((*buff_temp_counter +
strlen("esp_encapsulation")) < szkn)) {

 temp_name = "esp_encapsulation";
 success=0;

213

parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&suite_prof
ile->encapsulation_mode,&success);

 }

// check for ah_encapsulation

 if ((buff_temp[*buff_temp_counter] == 'a')&&((*buff_temp_counter +
strlen("ah_encapsulation")) < szkn)) {

 temp_name = "ah_encapsulation";
 success=0;

parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&suite_prof
ile->encapsulation_mode,&success);

 }

 // check for esp_life_seconds

 if ((buff_temp[*buff_temp_counter] == 'e')&&((*buff_temp_counter +
strlen("esp_encapsulation")) < szkn)) {

 temp_name = "esp_life_seconds";
 success=0;

parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&suite_prof
ile->life,&success);

 // if success then do esp life in seconds transalation

 if (success == 1) {

 life_seconds_translation(&suite_profile->life,&suite_profile-
>life_type,&suite_profile->life_duration);

 }

 }

 // check for ah_life_seconds

 if ((buff_temp[*buff_temp_counter] == 'a')&&((*buff_temp_counter +
strlen("ah_life_seconds")) < szkn)) {

 temp_name = "ah_life_seconds";
 success=0;

parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&suite_prof
ile->life,&success);

 // if success then do ah life in seconds transalation

 if (success == 1) {

214

 life_seconds_translation(&suite_profile->life,&suite_profile-
>life_type,&suite_profile->life_duration);

 }

 }

 // check for esp life time in kilobytes

 if ((buff_temp[*buff_temp_counter] == 'e')&&((*buff_temp_counter +
strlen("esp_life_kilobytes")) < szkn)) {

 temp_name = "esp_life_kilobytes";
 success=0;

parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&suite_prof
ile->life,&success);

 // if success then do esp life in kilobytes transalation

 if (success == 1) {

 life_kilobytes_translation(&suite_profile->life,&suite_profile-
>life_type,&suite_profile->life_duration);

 }

 }

 // check for ah life time in kilobytes

 if ((buff_temp[*buff_temp_counter] == 'a')&&((*buff_temp_counter +
strlen("ah_life_kilobytes")) < szkn)) {

 temp_name = "ah_life_kilobytes";
 success=0;

parse_ipsec_parameter(buff_temp,buff_temp_counter,temp_name,&suite_prof
ile->life,&success);

 // if success then do ah life in kilobytes transalation

 if (success == 1) {

 life_kilobytes_translation(&suite_profile->life,&suite_profile-
>life_type,&suite_profile->life_duration);

 }

 }

 // check for end of DNF expression

 if (buff_temp[*buff_temp_counter] == '|') {

 LOG_DBG ((LOG_POLICY, 40, "END OF EXPRESSION",""));

215

 not_done = 0;

 if (add_para_values(suite, suite_profile, suite_list, SA_counter)
== 1) {

 completed =1;

 }
 else {
 completed = 0;
 }
 }

 else {

 // Check to see if at end of file
 if (*buff_temp_counter >= szkn) {

 not_done = 0;

 }

 else {

 (*buff_temp_counter)++;

 }

 }

 }

 return (completed);
}

/***
*
*
* Function: void life_kilobytes_translation() - this function is
* used to convert lifetime in kilobytes from the
* KeyNote/isakmpd.policy format to the isakmpd.conf format.
* - Inputs:
* - Note: That in order to facilitate dynamic memory
* use, pointer to pointer coding syntax at times was
* required. By having a pointer to a pointer, memory
* created in a function will still be resident/within
* scope after returning from the function.
* - char ** life – holds the initial life time input.
* Pointer to a pointer used for dynamic memory
* allocation.
* - char ** life_type – holds the life time type string
* KILOBYTES. Pointer to a pointer used for dynamic
* memory allocation.

216

* - char ** life_duration – holds the life time
* duration string . Pointer to a pointer used for
* - dynamic memory allocation.
* - Outputs:
* - char ** life – used to return life time. Pointer to
* a pointer used for dynamic memory allocation.
* - char ** life_type – used to return life time type
* string KILOBYTES. Pointer to a pointer used for
* dynamic memory allocation.
* - char ** life_duration – used to return the life
* time duration string . Pointer to a pointer used for
* dynamic memory allocation.
*
***/

void life_kilobytes_translation(char ** life, char **life_type, char
**life_duration) {

 if (strcmp(*life, "1000")== 0) {

 free(*life);
 *life = strdup("LIFE_1000_KB");
 *life_type = strdup("KILOBYTES");
 *life_duration = strdup("1000,768:1536");

 }

 else if (strcmp(*life, "32000")== 0) {

 free(*life);
 *life = strdup("LIFE_32_MB");
 *life_type = strdup("KILOBYTES");
 *life_duration = strdup("32768,16384:65536");

 }

 else if (strcmp(*life, "45000000")== 0) {

 free(*life);
 *life = strdup("LIFE_4.5_GB");
 *life_type = strdup("KILOBYTES");
 *life_duration = strdup("4608000,4096000:8192000");

 }

 else {

 free(*life);
 *life = strdup("LIFE_1000_KB");
 *life_type = strdup("KILOBYTES");
 *life_duration = strdup("1000,768:1536");

 }
}

217

/***
*
*
* Function: void life_seconds_translation() - this function is
* used to convert lifetime in kilobytes from the
* KeyNote/isakmpd.policy format to the isakmpd.conf format.
* - Inputs:
* - Note: That in order to facilitate dynamic memory
* use, pointer to pointer coding syntax at times was
* required. By having a pointer to a pointer, memory
* created in a function will still be resident/within
* scope after returning from the function.
* - char ** life – holds the initial life time input.
* Pointer to a pointer used for dynamic memory
* allocation.
* - char ** life_type – holds the life time type string
* SECONDS. Pointer to a pointer used for dynamic
* memory allocation.
* - char ** life_duration – holds the life time
* duration string . Pointer to a pointer used for
* - dynamic memory allocation.
* - Outputs:
* - char ** life – used to return life time. Pointer to
* a pointer used for dynamic memory allocation.
* - char ** life_type – used to return life time type
* string SECONDS. Pointer to a pointer used for
* dynamic memory allocation.
* - char ** life_duration – used to return the life
* time duration string . Pointer to a pointer used for
* dynamic memory allocation.
*
***/

void life_seconds_translation(char ** life, char**life_type, char
**life_duration) {

 if (strcmp(*life, "600")== 0) {

 free(*life);

 *life = strdup("LIFE_600_SECS");
 *life_type = strdup("SECONDS");
 *life_duration = strdup("600,450:720");

 }

 else if (strcmp(*life, "3600")== 0) {

 free(*life);
 *life = strdup("LIFE_3600_SECS");
 *life_type = strdup("SECONDS");
 *life_duration = strdup("3600,1800:7200");

 }

218

else {
 free(*life);
 *life = strdup("LIFE_3600_SECS");
 *life_type = strdup("SECONDS");
 *life_duration = strdup("3600,1800:7200");

 }

}

/**

Function: void group_description_translation– this function is used to
convert group description from the KeyNote/isakmpd.policy syntax to the
isakmpd.conf syntax.

- Inputs:
- Note: That in order to facilitate dynamic memory use, pointer to
pointer coding syntax at times was required. By having a pointer to a
pointer, memory created in a function will still be resident/within
scope after returning from the function.
- char ** group_description– holds the initial group description
variable. Pointer to a pointer used for dynamic memory allocation.
- Outputs:
- char ** group_description – used to return translated
group_description. Pointer to a pointer used for dynamic memory
allocation.

**/

void group_description_translation(char ** group_description) {

 if (strcmp(*group_description, "1")== 0) {

 free(*group_description);
 *group_description = strdup("MODP_768");
 }

 else if (strcmp(*group_description,"2")==0) {

 free(*group_description);
 *group_description = strdup("MODP_1024");
 }

 else if (strcmp(*group_description,"3")==0) {

 free(*group_description);
 *group_description = strdup("MODP_155");
 }

 else if (strcmp(*group_description,"4")==0) {

 free(*group_description);

219

 *group_description = strdup("MODP_185");
 }

 else if (strcmp(*group_description,"5")==0) {

 free(*group_description);
 *group_description = strdup("MODP_1536");
 }
else {

 free(*group_description);
 *group_description = strdup("MODP_768");
 }

}

/**

- Function: void add_para_values()- this function generates the
security proposal format required by the configuration process.

- Note: That in order to facilitate dynamic memory use,
pointer to pointer coding syntax at times was required. By having a
pointer to a pointer, memory created in a function will still be
resident/within scope after returning from the function.
- Inputs:
- char ** suite - holds the set of security proposals. Pointer to a
pointer used to for dynamic memory creation.
- struct suite_struct **suite_profile – pointer to suite structure.
 - Outputs:
- char ** suite – returns the modified set of security proposals.
Pointer to a pointer used to for dynamic memory creation.
- struct suite_struct **suite_profile – pointer to suite structure
used to return the modified suite_profile structure.

**/

int add_para_values(char ** suite, struct suite_struct *suite_profile,
struct suite_struct * suite_list, int SA_counter){

 int success = 0;
 char * temp_hold4;
 //int suite_current_length=0;
 int max_SA_suite_size = 50;

 // Checking for duplicate SA....

 if (duplicate_sa(suite_list,SA_counter,suite_profile) == 0) {

 success = 1;

 // allocated enough space for SA

220

 suite_profile->suite_name=(char*)malloc(max_SA_suite_size);

 if (*suite != NULL) {

 if ((*suite =realloc(*suite, (strlen(*suite) +
max_SA_suite_size))) == NULL) {

 LOG_DBG ((LOG_POLICY, 40, "Memory Reallocation error...",""));
 return(0);

 }

 (*suite) = strncat(*suite, ",", strlen(","));

 }

 else { // suite equals NULL

 // Allocated max space needed for SA
 (*suite)=(char*)malloc(max_SA_suite_size);
 }

 // use length of string for coping of suite info at end of routine

 suite_profile->suite_name = strcpy(suite_profile->suite_name,"QM");

 // check for missing ESP or AH but existing ESP alg or AH alg

 if ((suite_profile->esp == NULL) && (suite_profile->ah == NULL)) {

 LOG_DBG ((LOG_POLICY, 40, "ESP & AH are empty....",""));

 // check for exisitng ESP enc alg or ESP auth alg then add ESP

 if ((suite_profile->esp_enc_alg!= NULL)||(suite_profile-
>esp_auth_alg!=NULL)) {

 suite_profile->suite_name = strncat(suite_profile->suite_name,"-
ESP",strlen("-ESP"));

 }
 // check for AH auth alg then add AH

 else if (suite_profile->ah_auth_alg != NULL) {
 suite_profile->suite_name = strncat(suite_profile-
>suite_name,"-AH", strlen("-AH"));

 }
 }

 // ESP or AH exist....

221

 else {

 if (suite_profile->esp != NULL) {
 suite_profile->suite_name = strncat(suite_profile->suite_name, "-
",strlen("-"));
 suite_profile->suite_name = strncat(suite_profile-
>suite_name,suite_profile->esp,strlen(suite_profile->esp));

 }

 else if (suite_profile->ah != NULL) {

 suite_profile->suite_name = strncat(suite_profile->suite_name, "-
", strlen("-"));
 suite_profile->suite_name = strncat(suite_profile->suite_name,
suite_profile->ah,strlen(suite_profile->ah));

 }
 }

 if (suite_profile->esp_enc_alg != NULL) {

 suite_profile->suite_name = strncat(suite_profile->suite_name, "-
",strlen("-"));
 suite_profile->suite_name = strncat(suite_profile-
>suite_name,suite_profile->esp_enc_alg,strlen(suite_profile-
>esp_enc_alg));

 }

 if (suite_profile->esp_auth_alg != NULL) {

 suite_profile->suite_name = strncat(suite_profile->suite_name, "-
",strlen("-"));
 suite_profile->suite_name = strncat(suite_profile-
>suite_name,suite_profile->esp_auth_alg,strlen(suite_profile-
>esp_auth_alg));
 }

 if (suite_profile->ah_auth_alg != NULL) {

 suite_profile->suite_name = strncat(suite_profile->suite_name, "-
",strlen("-"));
 suite_profile->suite_name = strncat(suite_profile-
>suite_name,suite_profile->ah_auth_alg,strlen(suite_profile-
>ah_auth_alg));

 }

 // check for PFS .. if true add -PFS

 // Check to make sure PFS is not NULL...

 if (suite_profile->pfs != NULL) {

222

 if (strcmp(suite_profile->pfs,"PFS")==0) {

 suite_profile->suite_name = strncat(suite_profile->suite_name,"-
PFS",strlen("-PFS"));

 }
 }

 else {

 LOG_DBG ((LOG_POLICY, 40, "PFS is NULL",""));
 }

 // dynamially creat memory for SA info and generate proper SA syntax

 suite_profile->suite_protocol = strdup(suite_profile->suite_name);

 suite_profile->suite_transform = (char*) malloc(strlen(suite_profile-
>suite_protocol) + 4);

 suite_profile->suite_transform = strcpy(suite_profile-
>suite_transform,suite_profile->suite_protocol);

 suite_profile->suite_transform = strncat(suite_profile-
>suite_transform,"-XF",strlen("-XF"));

 LOG_DBG ((LOG_POLICY, 40, "Protocol suite: AFTER:
%s",suite_profile->suite_protocol));
 LOG_DBG ((LOG_POLICY, 40, "Transform suite: AFTER: %s",suite_profile-
>suite_transform));

 LOG_DBG ((LOG_POLICY, 40, "Suite Name before: %s and size of:
%i",suite_profile->suite_name,strlen(suite_profile->suite_name)));

 suite_profile->suite_name = strncat(suite_profile->suite_name,"-
SUITE",strlen("-SUITE"));

 LOG_DBG ((LOG_POLICY, 40, "Suite Name after: %s and size of:
%i",suite_profile->suite_name,strlen(suite_profile->suite_name)));

 //dynamically assign space if necessary to suite
 if (*suite == NULL) {

 (*suite) = strdup(suite_profile->suite_name);

 }
 else {

 *suite = strncat(*suite, suite_profile->suite_name,
strlen(suite_profile->suite_name));

 }

 }

223

 else { // duplicate exists....
 success = 0;
 }

 return (success);

}

/**

Function: char * convert_to_uppercase()– converts a lower case string
to an upper case string and returns the string.

 - Input:
 - char * lowercase – lower case string.
 - Output:
 - char * - returns uppercase string.

**/

char * convert_to_uppercase(char * lowercase_string) {

 int string_size = strlen(lowercase_string);
 char * uppercase_string = (char *) malloc(100);
 char temp_char;
 int c;

 for (c=0; c< string_size; c++) {

 temp_char = lowercase_string[c];
 temp_char = toupper(temp_char);

 uppercase_string = strncat(uppercase_string,&temp_char,1);
 }

 lowercase_string = strcpy(lowercase_string,uppercase_string);

 return (lowercase_string);
}

/***

- Function: verify_parameter()– checks input dynamic parameter tag
value and if valid, compares tag value with given value. Returns three
possible flag values.

- Input:
 - char *buff_temp – string buffer used for KeyNote
 file.
- int *buff_temp_counter - index of pointer in buff_temp string
buffer.
 - char * sys_para_name – Dynamic parameter tag
 - char * sys_para_value – Dynamic parameter tag value

224

- int buff_temp_end – index of end-of-file (EOF) in buff_temp.
 - Output:
 - int – flag with the following three values:
 - 0 (dynamic parameter tag value does not
 match)
 - 1 (dynamic parameter tag value matches)
 - 2 (dynamic tag does not match)

***/

int verify_parameter(char *buff_temp, int *buff_temp_counter, char *
sys_para_name, char * sys_para_value,int buff_temp_end) {

 int sys_para_name_size = strlen(sys_para_name);
 int sys_para_value_size = strlen(sys_para_value);
 char * temp_string = (char *) malloc(buff_temp_end);
 char * temp_hold = (char*)malloc(100);
 int success = 2;
 char * temp_str = (char *) malloc(100);

 temp_str = strncpy(temp_str,&buff_temp[*buff_temp_counter],25);

 temp_string= &buff_temp[*buff_temp_counter];

 // compare tag titles

 if (strncmp (&buff_temp[*buff_temp_counter], sys_para_name,
sys_para_name_size) == 0) {

 (*buff_temp_counter)+= sys_para_name_size;

 // advance pointer to "

 while (buff_temp[*buff_temp_counter] != '\"') {

 (*buff_temp_counter)++;

 }
 // advance to pass ending "
 (*buff_temp_counter)++;

 // compare tag value with current selection parameter
 // if valid save value and advance counter

 temp_str =
strncpy(temp_str,&buff_temp[*buff_temp_counter],sys_para_value_size);
 temp_str[sys_para_value_size]='\0';

 if (strncmp(&buff_temp[*buff_temp_counter], sys_para_value,
sys_para_value_size) == 0) {

 LOG_DBG ((LOG_POLICY, 40, "Parameter value MATCH",""));

 temp_hold = strncpy(temp_hold,&buff_temp[*buff_temp_counter],

225

sys_para_value_size);

 temp_hold[sys_para_value_size]='\0';

 //set flag to true

 success = 1;

 // advance buffer counter to end of tag value
 (*buff_temp_counter)= (*buff_temp_counter) +
sys_para_value_size;

 // make temp_hold all UPPER_CASE

 temp_hold= convert_to_uppercase(temp_hold);

 }

 else {
 success = 0;

 } // end else

 }

 return (success);

}

/***

- Function: advance_to_end_DNF()– advances file pointer to the next DNF
security proposal.

- Input:
 - char *buff_temp – string buffer used for KeyNote
 file.
- int *buff_temp_counter - index of pointer in buff_temp string
buffer.
- int buff_temp_end – index of end-of-file (EOF) in buff_temp.
 - Output:
- int *buff_temp_counter - index of pointer in buff_temp string
buffer.

***/

void advance_to_end_DNF(char *buff_temp, int *buff_temp_counter, int
buff_temp_end) {

 // advance buffer to end of expression

 while ((*buff_temp_counter <= buff_temp_end) &&

226

(buff_temp[*buff_temp_counter] != '|')) {

 (*buff_temp_counter)++;
 }

}

/***

Function: void parse_ipsec_parameter(char *buff_temp, int *
buff_temp_counter, char * sys_para_name, char ** temp_hold, int *
success) – verifies that the tag is the expected tag and then parses
the tag and the tag value, storing information in input suite structure
char string.

- Inputs:
- char *buff_temp – pointer to the file being parsed.
- int *buff_temp_counter – pointer to index of character in file being
parsed.
- char * sys_para_name – pointer to the expected parameter tag name
- char ** temp_hold – pointer to a pointer (used for the purpose of
dynamic memory allocation) of char string in suite structure.
- int *success – pointer to an integer used for the success flag.
 -Outputs:
- int *buff_temp_counter – pointer to index of character in file being
parsed is returned via pointer reference. Pointer may be advance in
function.
- char * temp_hold - pointer to a pointer of a character string (used
for the purpose of dynamic memory allocation) in the suite structure
returned via pointer reference.
- int *success – pointer to an integer used to hold success flag
returned via reference.

***/

void parse_ipsec_parameter(char *buff_temp, int * buff_temp_counter,
char * sys_para_name, char ** temp_hold, int * success) {

 int temp_counter, temp_buffer;

 int sys_para_name_size = strlen(sys_para_name);
 int sys_para_value_size = 0;
 char * temp_string;
 temp_string = (char *) malloc(100);

 // CHECKING FOR TAG LABEL MATCH

 if (strncmp (&buff_temp[*buff_temp_counter], sys_para_name,
sys_para_name_size) == 0) {

 LOG_DBG ((LOG_POLICY, 40, "Match Found... copying label info",""));

227

 *buff_temp_counter+= sys_para_name_size;

 // ADVANCE TO THE START OF PARATHESISES
 while (buff_temp[*buff_temp_counter] != '"') {

 sys_para_value_size++;
 (*buff_temp_counter)++;

 }

 // advance passed openning "

 (*buff_temp_counter)++;

 // COUNT THE SIZE OF TAG VALUE - UNTIL CLOSE "

 temp_counter = 0;
 temp_buffer = *buff_temp_counter;

 while (buff_temp[temp_buffer] != '"') {

 temp_buffer++;
 temp_counter++;

 }

 //COPYING TAG VALUE

 // creating dynamic memory space for variable storage

 (*temp_hold) = (char*)malloc(temp_counter+1);

 *temp_hold = strncpy(*temp_hold, &buff_temp[*buff_temp_counter],
temp_counter);

 (*temp_hold)[temp_counter]='\0';

 (*buff_temp_counter)= temp_buffer + 1;

 *success=1; // set success flag to true

 // make temp_hold all UPPER_CASE

 *temp_hold = convert_to_uppercase(*temp_hold);

 }

 else {
 LOG_DBG ((LOG_POLICY, 40, "Match Not Found...",""));
 }

}

228

/**

- Function: void parse_ipsec_para_tag()- verifies that the tag is the
expected tag and that tag value contains “yes”. If so, parses tag and
stores its value in suite structure char string.

- Inputs:
- char *buff_temp – pointer to the file being parsed.
- int *buff_temp_counter – pointer to index of character in file being
parsed.
- char * sys_para_name – pointer to the expected parameter tag name
- char ** temp_hold – pointer to a pointer (used for the purpose of
dynamic memory allocation) of char string in suite structure.
- int sys_para_name_reduced – integer that holds the string size of the
tag. Either 2 or 3 used for AH, ESP or PFS tags.
- int *success – pointer to an integer used for the success flag.
 -Outputs:
- int *buff_temp_counter – pointer to the index of character in file
being parsed is returned via pointer reference. Pointer may be advanced
in the function.
- char * temp_hold - pointer to a pointer of a character string (used
for the purpose of dynamic memory allocation) in the suite structure
returned via pointer reference.
- int *success – pointer to an integer used for the success flag
returned via reference.

**/

void parse_ipsec_para_tag(char *buff_temp, int * buff_temp_counter,
char * sys_para_name, char ** temp_hold, int sys_para_name_reduced, int
* success) {

 //int temp_counter;
 int temp_buffer;

 int sys_para_name_size = strlen(sys_para_name);
 //int sys_para_value_size = 0;
 char * bool_tag = "yes";
 int bool_tag_size = 3;
 char * temp_string;
 temp_string = (char*) malloc (100);

 // CHECKING FOR TAG LABEL MATCH

 if (strncmp (&buff_temp[*buff_temp_counter], sys_para_name,
sys_para_name_size) == 0) {
 *buff_temp_counter+= sys_para_name_size;

 temp_buffer = *buff_temp_counter;

229

 // ADVANCE TO THE START OF PARATHESISES

 while (buff_temp[temp_buffer] != '"') {

 temp_buffer++;

 }

 // advance passed openning "

 temp_buffer++;

 // Check to see if boo_tag equals "YES"

 if (strncmp (&buff_temp[temp_buffer], bool_tag, bool_tag_size)
== 0) {

 *buff_temp_counter = temp_buffer;

 temp_hold=(char)malloc(sys_para_name_reduced+1);

 *temp_hold = strncpy(*temp_hold, sys_para_name,
sys_para_name_reduced);

 (*temp_hold)[sys_para_name_reduced]='\0';

 (*buff_temp_counter)+= bool_tag_size;

 *success = 1; // set success flag to true

 // make temp_hold all UPPER_CASE

 *temp_hold=convert_to_uppercase(*temp_hold);

 }
 else {
 LOG_DBG ((LOG_POLICY, 40, "Tag bool match not found...",""));
 }

 }
 else {
 LOG_DBG ((LOG_POLICY, 40, "Tag Name no match....",""));
 }

}

 [In the function conf_reinit() the following line of code is added]

con_kn_parse(trans);

230

THIS PAGE INTENTIONALLY LEFT BLANK

231

APPENDIX B. IKE_QUICK_MODE.C

The following is the code added to /usr/src/sbin/isakmpd/ike_quick_mode.c:
/**
*
* Structure: dynamic_packet
*
* This structure is used to stored dynamic parameter
* data, including dynamic parameter name, assignment symbol
* and value.
*
**

struct dynamic_packet {

 char* title;
 char* symbol;
 char* value;
};

struct dynamic_packet* package_dynamic_parameters(int *);
struct dynamic_packet * package_dynamic_parameters2(int *);

/**
*
* Function: package_dynamic_parameters()This function reads a file that
* contains the current inputs of dynamic parameters such as
* Network Mode and Security Level. Initializes an array of
* structures that will dynamically grow as required. Loads the
* file input into the array of struct.
*
* - Input:
* - int * package_counter - used to determine the size of the
* struct array
*
*
* - Output:
* - struct dynamic_packet * - pointer to an array of
* dynamic_packet structure
*
*
**/

struct dynamic_packet * package_dynamic_parameters(int
*package_counter) {

 int array_size = 10 ; // chosen as average case for struct size

 struct dynamic_packet * package; // pointer to array of struct

 // strings used to read from file

232

 char * title = (char*)malloc(20);
 char * symbol= (char*)malloc(20);
 char * value = (char*)malloc(20);

 // used for file IO
 FILE * pifp;
 int file_status=0;

 (*package_counter) = 0; // initialize the array size to zero

 // initialize the pointer to an array size of array_size

 package = (struct dynamic_packet *)malloc(sizeof(struct
dynamic_packet)*array_size);

 // open file to read in dynamic parameters
 // check for errors in openning the file

 if ((pifp = fopen("/usr/src/sbin/isakmpd/dynamic_parameters",
"r"))== NULL) {
 // error openning the file

 LOG_DBG ((LOG_POLICY, 40, "ERROR OPENNING FILE %d",errno));

 }
 else { // file was successfully openned

 // do-while loop to read in data until EOF reached

 do {

 // read in from the file expecting the following syntax:
 // title symbol value

 file_status = fscanf(pifp, "%s%s%s", title, symbol, value);

 LOG_DBG ((LOG_POLICY, 40, "Just read from file....",""));
 LOG_DBG ((LOG_POLICY, 40, "Title: %s Symbol: %s Value: %s",
 title, symbol, value));

 // check for reading errors...

 if (file_status == 0) {

 // reading error occurred

 LOG_DBG ((LOG_POLICY, 40, "error reading from the
file....",""));
 }

 // check for EOF...

 else if (file_status == EOF) {

 // EOF reached

 LOG_DBG ((LOG_POLICY, 40, "end of file....",""));

233

 }

 // otherwise... read operation successful

 else {

 // create new struct space for dynamic parameters and
 // assign values from file to struct

 package[(*package_counter)].title = strdup(title);
 package[(*package_counter)].symbol = strdup(symbol);
 package[(*package_counter)].value = strdup(value);

 // increment package counter array of struct
 (*package_counter)++;

 // dynamic resize array if more memory is required

 if ((*package_counter) == array_size) {

 array_size+=10; // grow array in increments of 10

 package = (struct dynamic_packet
*)realloc(package,sizeof(struct dynamic_packet)*array_size);
 }
 }
 }
 while ((file_status != 0) && (file_status !=EOF));

 fclose(pifp); // close file

 test_print_dynamic_packet(package,*package_counter);

 }

 // free memory
 free(title);
 free(symbol);
 free(value);
 // free(pifp);

 return (package);

}

[In the check_policy() function the following lines of code are added
to read int dynamic parameters and then load them in the KeyNote query
mechanism]

 package = package_dynamic_parameters2(&package_size);

 // load Dynamic parameters into KeyNote

 for (c= 0; c < package_size;c++) {

234

 if (LK (kn_add_action, (isakmp_sa->policy_id,
 package[c].title,package[c].value,0)) == -1)

 {
 log_print ("CHECK_POLICY: "
 "kn_add_action loading FAILED for title: %s value: %s",
 package[c].title,package[c].value);
 LK (kn_close, (isakmp_sa->policy_id));
 isakmp_sa->policy_id = -1;
 return 0;
 }
 else {

 LOG_DBG ((LOG_POLICY, 40, "CHECK_POLICY: load successful for
 title: %s value: %s",package[c].title,package[c].value));

 }
 }

235

APPENDIX C. DEMO.JAVA

/***
Class demo.java - This class creates and handles the generation of the
welcome screen and menu choices.

***/

import javax.swing.*;
import java.awt.*;
import java.awt.Toolkit;
import kaffe.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import dp_console;
import demo_support_functions;
import ipsecinfo;

public class demo extends JFrame {
 private SPD spd;
 private JPanel p, ptitle, pchoices;
 private JButton enter;
 Color bg_color = Color.white;

 private JRadioButton sp_choice, dp_choice, ep_choice, ds_choice,
b2_choice, b3_choice, b4_choice, ex_choice;
 private JButton sp_button, dp_button, ep_button, ds_button,
b2_button, b3_button, b4_button, ex_button;
 private JLabel qoss_menu, status_label;
 private dp_console dp;
 private ipsecinfo ip;
 private tcpdump tcp;
 private SPFK spfk;
 private static Runtime rt;
 private demo_support_functions dsf;
 // private Thread file_copy fc;

 private Image i;

/**
Method: demo – class constructor - constructor – initializes the
welcome screen.

**/
 public demo() {

 super("QoSS IPsec");
 dsf = new demo_support_functions();
 dp = new dp_console();

 dp.addWindowListener(

236

 new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 {

 System.exit(0);
 }
 }
);

 p = new JPanel();
 pchoices = new JPanel();
 setContentPane(p);
 p.setBackground(bg_color);
 p.repaint();
 pchoices.setBackground(bg_color);
 pchoices.repaint();

 p.setLayout(new FlowLayout());
 enter = new JButton("Continue");
 ContinueButtonHandler ct_handler = new
ContinueButtonHandler();
 enter.addActionListener(ct_handler);

 JLabel label;
 p.add(label = new JLabel("OpenBSD "));
 label.setForeground(Color.black);
 label.setFont(new Font("Serif",Font.BOLD,20));
 p.add(label = new JLabel("IPsec "));
 label.setForeground(Color.blue);
 label.setFont(new Font("Serif",Font.BOLD,50));

 p.add(label = new JLabel("Dynamic Parameterization"));
 label.setForeground(Color.red);
 label.setFont(new Font("Serif",Font.ITALIC,40));
 p.add(label = new JLabel(" by
Chris Agar, LT USN "));
 label.setForeground(Color.black);
 label.setFont(new Font("Serif",Font.BOLD,15));
 p.add(enter);
 p.repaint();
 setSize(500,175);
 setVisible(true);
 status_label = new JLabel("");
 qoss_menu = new JLabel("QoSS IPsec Demonstration Selection
Menu");

 sp_button = new JButton("Start IPsec");
 dp_button = new JButton("Dynamic Parameterization");
 ep_button = new JButton("Stop IPsec");
 ds_button = new JButton("Display SAD");
 b2_button = new JButton("Display TCPDUMP");
 b3_button = new JButton("Display SPD");
 b4_button = new JButton("Display Security Policy");

237

 ex_button = new JButton("Exit");

 SPButtonHandler spb_handler = new SPButtonHandler();
 DPButtonHandler dpb_handler = new DPButtonHandler();
 DSButtonHandler dsb_handler = new DSButtonHandler();
 EXButtonHandler exb_handler = new EXButtonHandler();
 TCPButtonHandler tcpb_handler = new TCPButtonHandler();
 SPDButtonHandler spdb_handler = new SPDButtonHandler();
 DSPButtonHandler dspb_handler = new DSPButtonHandler();
 INFButtonHandler infb_handler = new INFButtonHandler();

 sp_button.addActionListener(spb_handler);
 dp_button.addActionListener(dpb_handler);
 ex_button.addActionListener(exb_handler);
 ds_button.addActionListener(dsb_handler);
 b2_button.addActionListener(tcpb_handler);
 b3_button.addActionListener(spdb_handler);
 b4_button.addActionListener(dspb_handler);
 ep_button.addActionListener(infb_handler);

 // initialize connection_index
 initialize_connection_index_file();
 show();

 }

/**
Method: initialize_connection_index_file() – resets connection index
counter to zero in the connection index counter file.
- Input: none.
- Output: none.

**/

public void initialize_connection_index_file() {

 try {
 int temp_string = 0;
 System.out.println("Writing connection# to the file.");
 File f = new File("/root/demo/connection_number");

 FileOutputStream fos = new FileOutputStream(f);

 PrintStream out = new PrintStream(fos);

 out.println("0");

 fos.close();
 out.close();

 }

 catch (Exception e) {

 System.out.println("Execption Thrown in Write_CF e: " +e);
 }

238

 }

/**
Method: reset_error_panel() – refreshes error panel and removes old
message.
- Input: none.
- Output: none.

**/

 public void reset_error_panel() {

 status_label.setText(" ");

 }

/**

Method: load_dp_file(String nm, String sl) – accepts network mode and
security level inputs and writes them into the dynamic parameter file.
-Input:
- String nm- network mode value.
- String sl – security level value.
- Output: none.

**/

public void load_dp_file(String nm, String sl) {

 try {
File f = new File("/usr/src/sbin/isakmpd/dynamic_parameters");

 FileOutputStream fos = new FileOutputStream(f);

 PrintStream out = new PrintStream(fos);

 out.println("network_mode = " + nm+ "\n");
 out.println("security_level = " + sl + "\n");

 fos.close();
 out.close();

 }
 catch (Exception e) {
 System.out.println("Execption Thrown in Write_DP e: " +e);
 }
 }

/**
Class: ContinueButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) – action handler for the
continue button on the welcome JFrame.

**/

239

private class ContinueButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e)
 {
 try{

 System.out.println("Continue Button Selected");

 p.removeAll();

 p.setLayout(new FlowLayout());
 p.add(qoss_menu);
 p.add(status_label);
 pchoices.setLayout(new GridLayout(4,2));
 pchoices.add(sp_button);
 pchoices.add(ds_button);
 pchoices.add(dp_button);
 pchoices.add(ep_button);

 pchoices.add(b2_button);
 pchoices.add(b3_button);
 pchoices.add(b4_button);
 pchoices.add(ex_button);
 p.add(pchoices);

 setSize(450,150);
 setVisible(true);

 }

 catch (Exception s) {
 System.out.println("Exception thrown in Continue Button
Handler.");
 System.out.println("Exception: "+s);
 }

 }

}

/***

Class: SPRadioButtonHandler implements ItemListener

- Method: itemStateChanged(ItemEvent e) – action handler for the start
IPsec radio button.

***/
// Start IPsec Process

private class SPButtonHandler implements ActionListener {

240

 public void actionPerformed(ActionEvent e)
 {
 reset_error_panel();

 System.out.println("Start IPsec choice was selected.");

 // check to see if process is running
 if (dsf.daemon_running()) {

 status_label.setText("IPsec is already running!");

 }

 else { // ipsec is not running

 // load default security level and network mode into
dp file

 load_dp_file("default","default");
 initialize_connection_index_file();

 // Flushing ipsec mechanism
 dsf.flush_ipsec();

 // Mount kernel
 dsf.mount_kern();

 // LOad SPD
 dsf.load_spd();

 //start ipsec mechanism
 dsf.start_ipsec();
 }
 }
}

/***

Class: DSRadioButtonHandler implements ItemListener

- Method: itemStateChanged(ItemEvent e) – action handler for Display
SAD radio button.

***/

private class DSButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e)
 {
 reset_error_panel();

 System.out.println("Display Negotiated SA's was
selected.");

 ip = new ipsecinfo();
 ip.start();

241

 }
}

/**

Class: INFButtonHandler implements ItemListener– item listener for stop
ipsec button.

- Method: actionPerformed(ActionEvent e) – action handler for Exit
menu.

**/

private class INFButtonHandler implements ActionListener {

 public void actionPerformed (ActionEvent e)
 {

 reset_error_panel();
 System.out.println("Stop IPsec choice was selected.");

 if (dsf.daemon_running()) {

 System.out.println("IPsec is running....");
 dsf.tear_down_connection();
 dsf.stop_ipsec();
 }
 else System.out.println("IPsec is not running....");

 }
}

/**

Class: TCPButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) – action handler for Display
tcpdump button.

**/

private class TCPButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e)
 {
 reset_error_panel();
 System.out.println("TCP Dump start....");

 tcp = new tcpdump();
 tcp.start();

 }
}

242

/**

Class: SPDButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) – action handler for Display
SPD button.

***/

private class SPDButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e)
 {
 reset_error_panel();
 System.out.println("Display SPD");

 spd = new SPD();

 }
}

/***

Class: DSPButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) – action handler for Display
Security Policy button.

***/

private class DSPButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e)
 {
 reset_error_panel();
 System.out.println("Display Security Policy");

 spfk = new SPFK();

 }
}

/**

Class: EXButtonHandler implements ActionListener– action handler for
Exit button.

- Method: actionPerformed(ActionEvent e) – action handler for Exit
menu.

243

**/

private class EXButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e)
 {
 reset_error_panel();
 System.out.println("Exit IPsec choice was selected.");

 if (dsf.daemon_running()) {

 System.out.println("IPsec is running....");
 dsf.tear_down_connection();
 dsf.stop_ipsec();
 }

 System.exit(0);
 }
}

/**

Class: DPButtonHandler implements ActionListener

- Method: actionPerformed(ActionEvent e) – action handler for Dynamic
Parameterization button.

**/

private class DPButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e)
 {
 reset_error_panel();
 //dp_choice.setSelected(false);
 System.out.println("Dynamic Parameter selection choice was
selected.");
 dp.start_dp_console();
 }
}

/***

Method: static main(String args) – the main program of the demo class.

***/

public static void main (String args[])
{
 demo d = new demo();
 rt = Runtime.getRuntime();

244

 d.addWindowListener(
 new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 {

 System.exit(0);
 }
 }
);

 }

}

245

APPENDIX D. SPD.JAVA

/***

Class SPD.java - This class creates and handles the
generation of the Security Policy Database.

***/

// SPD.java

import javax.swing.*;
import javax.swing.border.Border;
import javax.swing.border.TitledBorder;
import javax.swing.text.Document;
import javax.swing.text.BadLocationException;
import java.awt.Container;
import java.awt.Dimension;
import java.awt.Rectangle;
import java.awt.Color;
import java.awt.Font;
import java.awt.FlowLayout;
import java.awt.Toolkit;
import java.awt.event.*;
import java.awt.*;
import java.util.NoSuchElementException;
import java.util.StringTokenizer;
//import java.net.*;
import java.io.*;

public class SPD {
 JSeparator separator;
 demo_support_functions dsf;
 private static Runtime rt;
 InputStream in;
 Process p;
 FileInputStream fin;
 JPanel contentPane;
 JPanel panel, toolbar;
 JPanel [] subpanel1, subpanel2, subpanel3;
 JButton exitButton;
 JTextField []sourceIP;
 JTextField []sourcePort;
 JTextField []destIP;
 JTextField []destPort;
 JTextField []protocol;
 JTextField []sa;
 JFrame j;

/**

Method: SPD – class constructor - constructor – initializes the
SPD JFrame.

**/

246

 public SPD() {
 j = new JFrame("Security Policy Database");

 j.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 doExit();
 }
 });

 rt = Runtime.getRuntime();
 dsf = new demo_support_functions();

 // build GUI

 contentPane = new JPanel(new BorderLayout());
 panel = new JPanel(new GridLayout(0,1));

 subpanel1 = new JPanel[12];
 subpanel2 = new JPanel[12];
 subpanel3 = new JPanel[12];
 sourceIP = new JTextField[12];
 sourcePort = new JTextField[12];
 destIP = new JTextField[12];
 destPort = new JTextField[12];
 protocol = new JTextField[12];
 sa = new JTextField[12];

 toolbar = new JPanel();

 for (int c=0;c<11;c++) {
 // source IP
 subpanel1[c] = new JPanel(new GridLayout(1,4));
 //panel.add(subpanel[0]);
 subpanel1[c].add(new JLabel("Source IP: "));
 subpanel1[c].add(sourceIP[c] = new JTextField("DATA NOT
AVAILABLE"));
 sourceIP[c].setEditable(false);

 // source port

 subpanel1[c].add(new JLabel("Source Port: "));
 subpanel1[c].add(sourcePort[c] = new JTextField(4));
 sourcePort[c].setEditable(false);

 // dest IP
 subpanel2[c] = new JPanel(new GridLayout(1,4));
 subpanel2[c].add(new JLabel("Destination IP: "));
 subpanel2[c].add(destIP[c] = new JTextField(20));
 destIP[c].setEditable(false);

 // dest port
 subpanel2[c].add(new JLabel("Destination Port: "));
 subpanel2[c].add(destPort[c] = new JTextField(4));
 destPort[c].setEditable(false);

247

 // protocol
 subpanel3[c] = new JPanel(new GridLayout(1,4));
 subpanel3[c].add(new JLabel("Protocol: "));
 subpanel3[c].add(protocol[c] = new JTextField(4));
 protocol[c].setEditable(false);

 // SA
 subpanel3[c].add(new JLabel("SA(Addr/Proto/Type/Dir):"));
 subpanel3[c].add(sa[c]= new JTextField(20));
 sa[c].setEditable(false);
 }
 // separator
 separator = new JSeparator(SwingConstants.HORIZONTAL);

 // panel for exit button

 toolbar.add(exitButton = new JButton("Exit"));
 exitButton.setToolTipText("Exit Security Policy Database");
 exitButton.setMnemonic ('x');
 exitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 doExit();
 }
 });

 contentPane.add(panel, BorderLayout.NORTH);
 contentPane.add(toolbar, BorderLayout.SOUTH);
 j.setContentPane(contentPane);
 panel.setVisible(true);
 toolbar.setVisible(true);

 // now fill in actual values
 setTextFields();
 }

 // --
 // exit
 // --
 void doExit() {
 j.dispose();
 }

/***

Method: String create_SPD_input() – this method retrieves
the SPD data, stores it in a string and returns it to the
calling function.

- Input: none.
- Output:

- String – contains the retrieved SPD data.

***/

 String create_SPD_input() {

248

 String SPD_s = new String();

 try {

 String[] s = new String[3];
 s[0]= new String("/bin/sh");
 s[1] = new String("-c");
 s[2] = new String("netstat -rn -f encap");

 p=rt.exec(s);
 p.waitFor();
 in = p.getInputStream();
 System.out.println("buffer size: "+in.available());
 byte[] buffer = new byte[in.available()];
 in.read(buffer);
 SPD_s = new String(buffer);
 System.out.println("spd buffer: \n"+SPD_s);

 }
 catch (Exception e) {
 System.out.println("Exception thrown in create spd input
"+e);

 }

 return (SPD_s);
 }

/**

Method: setTextFields() – this method parses the input
string and displays the SPD data in the JFrame.

- Input: none.
- Output: none

**/

 void setTextFields() {
 String s = create_SPD_input();
 int field_counter = -1;

 StringTokenizer st = new StringTokenizer(s);
 try {
 if (st.hasMoreTokens()) {

 System.out.println("SPD data...");
 // skip initial tokens
 for (int i=0; i<9; i++) {
 System.out.println("next spd token: "+st.nextToken());
 }

 // set text fields

 // Check for no entries in table
 if (st.hasMoreTokens()) {
 //panel.removeAll();

249

 while (st.hasMoreTokens()) {
 field_counter= field_counter +1;

 String temps = st.nextToken();
 System.out.println("next spd token: "+temps);
 sourceIP[field_counter].setText(temps);

 temps = st.nextToken();
 System.out.println("next spd token: "+temps);
 sourcePort[field_counter].setText(temps);
 panel.add(subpanel1[field_counter]);
 subpanel1[field_counter].setVisible(true);

 temps = st.nextToken();
 System.out.println("next spd token: "+temps);
 destIP[field_counter].setText(temps);

 temps = st.nextToken();
 System.out.println("next spd token: "+temps);
 destPort[field_counter].setText(temps);
 panel.add(subpanel2[field_counter]);
 subpanel2[field_counter].setVisible(true);

 temps = st.nextToken();
 System.out.println("next spd token: "+temps);
 protocol[field_counter].setText(temps);

 temps = st.nextToken();
 System.out.println("next spd token: "+temps);
 sa[field_counter].setText(temps);
 panel.add(subpanel3[field_counter]);
 subpanel3[field_counter].setVisible(true);

 panel.add(new
JSeparator(SwingConstants.HORIZONTAL));

 }
 }
 else { // empty table
 panel.add(new JLabel("No Entries Exist in the SPD"));
 }

 }
 else {
 System.out.println("Empty String...no tokens to parse.");
 }

 } catch (NoSuchElementException e) {
 System.out.println("SPD tokenizer error in string <"
 + s + ">\n" + e);
 }

 j.pack();
 j.setVisible(true);
}

250

}

251

APPENDIX E. DEMO_SUPPORT_FUNCTIONS.JAVA

/***
Class: demo_support_functions – contains support functions for other classes.

***/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

public class demo_support_functions {

 private static Runtime rt;
 private int connection_count = 0;
 private int connection_index = 0;
 private Process p;
 private InputStream in;

/***

Method: demo_support_functions constructor.

***/

public demo_support_functions() {

 try {
 connection_count =0;
 connection_index=0;
 rt = Runtime.getRuntime();
 }

 catch (Exception e) {

 System.out.println("Exception thrown in dsf constrcutor :
"+e);
 }
}

/***

Method: flush_ipsec() – generates the run time commands to

flush the IPsec mechanism.

252

- Input: none.

- Output: none.

***/

public void flush_ipsec() {

 try {

 System.out.println("performing ipsecadm flush...");
 String[] s = new String[3];
 s[0]= new String("/bin/sh");
 s[1] = new String("-c");
 s[2] = new String("ipsecadm flush");
 rt.exec(s).waitFor();
 }
 catch (Exception e) {
 System.out.println("Excpetion thrown in flush_ipsec : "+e);
 }
}

/***

Method: load_spd() – generates the run time commands to

load SPD with the security policy.

- Input: none.

- Output: none.

***/

public void load_spd() {

 try {
 System.out.println("performing sh vpn28_ah_a - loading SPD
with defaults");
 String[] s2 = new String[3];
 s2[0]= new String("/bin/sh");
 s2[1] = new String("-c");
 s2[2] = new String("sh /root/vpn28_ah_a");
 rt.exec(s2);
 }

 catch (Exception e) {
 System.out.println("Excpetion thrown in load_spd : "+e);
 }

}

253

/***

Method: mount_kern() – generates the run time commands to

mount the kernel.

- Input: none.

 - Output: none.

***/

public void mount_kern() {

 try {
 System.out.println("Mounting Kern");

 String[] s3 = new String[3];
 s3[0]= new String("/bin/sh");
 s3[1] = new String("-c");
 s3[2] = new String("sh /root/mount_kern");
 rt.exec(s3);
 }
 catch (Exception e) {
 System.out.println("Excpetion thrown in mount_kern : "+e);
 }

}

/***

Method: start_ipsec() – generates the run time commands to

start the ipsec mechanism.

- Input: none.

- Output: none.

***/

public void start_ipsec() {

 try {
 System.out.println("Executing isakmpd/ipsec");

 String[] s3 = new String[3];
 s3[0]= new String("/bin/sh");
 s3[1] = new String("-c");
 s3[2] = new String("isakmpd");
 rt.exec(s3).waitFor();

254

 }
 catch (Exception e) {
 System.out.println("Excpetion thrown in start_ipsec : "+e);
 }

}

/***

Method: stop_ipsec() – generates the run time commands to

stop the IPsec mechanism.

- Input: none.

- Output: none.

***/

public void stop_ipsec() {

 try {

 System.out.println("Stopping IPsec...");

 File f = new File("/var/run/isakmpd.pid");

 if (f.exists()) {

 FileInputStream fis = new FileInputStream(f);

 byte[] buffer = new byte[fis.available()];

 fis.read(buffer);

 String tempString = new String();

 String kill_value = new String(buffer);

 System.out.println("Killing the ipsec process id: " +
kill_value);
 String[] s3 = new String[3];
 s3[0]= new String("/bin/sh");
 s3[1] = new String("-c");
 s3[2] = new String("kill " + kill_value);

 rt.exec(s3).waitFor();

 fis.close();
 }
 }
 catch (Exception e) {
 System.out.println("Excpetion thrown in stop_ipsec : "+e);
 }

255

}

/***

Method read_connection_index_file()– reads in the current

value of the index counter from a file.

- Input: none.

 - Output: none.

***/

public void read_connection_index_file() {

 System.out.println("Reading connection file");

 int test =5;

 try {

 File f = new File ("connection_number");

 FileInputStream fis = new FileInputStream(f);
 int size = fis.available();

 byte[] buffer = new byte[size];

 String ts = new String();

 fis.read(buffer);

 String tempString = new String(buffer);
 StringTokenizer st = new StringTokenizer(tempString);
 while (st.hasMoreTokens()) {
 try {
 ts = st.nextToken();
 System.out.println("ts token:"+ts+":");
 connection_index = Integer.parseInt(ts);
 System.out.println("ci:"+connection_index);
 }
 catch (Exception ef) {System.out.println("error dude:
"+ef);}
 }

 fis.close();

 }
 catch (Exception e) { System.out.println("Exception Thrown in
read_connection file: "+e + "connection: "+test);}
}

/***

256

Method: write_connection_index_file()– writes the current

value of the index counter to a file.

- Input: none.

- Output: none.

***/

public void write_connection_index_file() {

 try {
 System.out.println("Writing connection# to the file.");
 File f = new File("/root/demo/connection_number");

 FileOutputStream("/root/demo/connection_number");
 FileOutputStream fos = new FileOutputStream(f);
 PrintStream out = new PrintStream(fos);
 out.println(connection_index);

 fos.close();
 out.close();

 }

 catch (Exception e) {

 System.out.println("Execption Thrown in Write_CF e: " +e);
 }
 }

/***

Method: daemon_running() – checks to see if the IPsec

process is currently running.

- Input: none.

- Output:

- Boolean result – true if IPsec is currently running

and false otherwise.

***/

public boolean daemon_running() {

 boolean result = false;

 try {

 System.out.println ("Testing to see if daemon is running...");

257

 String[] s = new String[3];
 s[0]= new String("/bin/sh");
 s[1] = new String("-c");
 s[2] = new String("ps -ax | grep isakmpd | grep -v grep >
daemon_search");
 rt.exec(s).waitFor();

 File f = new File("daemon_search");

 if (f.exists()) {
 System.out.println("File daemon_search exists..");}
 else { System.out.println("file daemon_search does not exist!");}
 long test = f.length();

 FileInputStream in = new FileInputStream(f);

 int size_before = in.available();

 byte[] buffer = new byte[size_before];

 in.read(buffer);
 String tempString = new String();

 String record = new String(buffer);
 in.close();

 if (size_before > 0) {

 System.out.println("daemon is running.");

 // write to file to stop daemon...

 result = true;

 }

 else {
 System.out.println("daemon is not running.");
 result = false;
 }

 }
 catch (Exception e) {
 System.out.println("Exception Throw is_daemon_running: " +e);
 }

 return (result);

}

/***

 Method: pause() – sleeps for a given number of seconds.

 - Input:

int – number of seconds.

258

 - Output: void

***/

 public void pause(int t) {
 try {

 long pauseTime = (long) (t*1000);
 Thread.sleep(pauseTime);
 }
 catch (Exception etp) {
 System.out.print("Run Error: " + etp);
 }
 }

/***
 Method: stop_tcpdump() – terminates tcpdump process.

- Input: void

 - Output: void

***/

 public void stop_tcpdump() {

 boolean notDone = true;

 while (notDone) {

 try {
 System.out.println("in stop tcp_dump");
 String[] s = new String[3];
 s[0]= new String("/bin/sh");
 s[1] = new String("-c");
 s[2] = new String("ps -ax | grep tcpdump | grep -v grep |
grep -v /bin/sh");
 p = rt.exec(s);

 p.waitFor();

 in = p.getInputStream();
 System.out.println("performed rt.");

 }
 catch (Exception e) {
 System.out.println("Exception thrown in stop_tcp_dump"+e);

 }

 String line = null;

 try {

 BufferedReader br = new BufferedReader(new
InputStreamReader(in));

259

 line = br.readLine();

 if (line != null) {

 System.out.println("tcpdump found running... process output
#: "+line);

 pause(3);

 String s = new String(line);

 StringTokenizer st = new StringTokenizer(s);

 String kill_value = st.nextToken();

 String[] s3 = new String[3];
 s3[0]= new String("/bin/sh");
 s3[1] = new String("-c");
 s3[2] = new String("kill " + kill_value);

 rt.exec(s3).waitFor();

 System.out.println("Killing the following process:
"+kill_value);

 }
 else {
 System.out.println("tcpdump is not running");
 notDone = false;
 }
 }
 catch (Exception e){
 System.out.println("Error thrown while trying to read tcpdump
kill process id");
 notDone = false;
 }
 }
}

/***

Method: read_file() – reads in data from the input file.

 - Input:

String – file name.

 - Output:

 String – data from the file.

***/

 public String read_file(String file_name) {

 String s = new String();
 int file_size =0;
 byte[] buffer;

260

 try {

 File f = new File(file_name);

 FileInputStream fis = new FileInputStream(f);

 file_size = fis.available();

 buffer = new byte[file_size];

 fis.read(buffer);

 s = new String(buffer);

 System.out.println("String read: /n <"+s+">");

 }
 catch (Exception e) {
 System.out.println("Error reading from file: " + file_name +
"/n"+ " Exception thrown: "+e);

 }

 return (s);
 }

/***

Method: tear_down_connections() – tears down existing

security association (SA) connections between peers.

- Input: none.

- Output: none.

***/

public void tear_down_connection () {

 System.out.println("Tear_Down_Connection");
 calc_connection();
 read_connection_index_file();
 try {

 // assumption made that for every SA there are a pair
 int counter_temp = connection_count/2;

 if (connection_count == 0) {

 System.out.println("No current SAs exist");

 }
 else {
 for (int count = 1; count <=counter_temp; count++) {

261

 write_to_fifo();
 if (count != counter_temp) {
 connection_index++;
 }
 //write_to_fifo();
 }

 }

 File f = new File("/var/run/isakmpd.pid");

 if (f.exists()) {

 FileInputStream fis = new FileInputStream(f);

 byte[] buffer = new byte[fis.available()];

 fis.read(buffer);

 fis.close();

 String tempString = new String();

 String kill_value = new String(buffer);

 String[] s3 = new String[3];
 s3[0]= new String("/bin/sh");
 s3[1] = new String("-c");
 s3[2] = new String("kill -HUP " + kill_value);

 rt.exec(s3).waitFor();

 }

 }

 catch (Exception e) {
 System.out.println("Error in SPI count.");
 System.out.println("Exception thrown in tear_down_connection e:
"+e);
 }

 write_connection_index_file();

}

/***

Method: write_to_fifo()– uses the current connection index

to write teardown instructions to the IPsec mechanism in

/var/run/isakmpd.fifo file.

- Input: none.

- Output: none.

262

***/

public void write_to_fifo() {

 try {

 System.out.println("writing to fifo");

 File f = new File("/var/run/isakmpd.fifo");

 FileOutputStream fout = new FileOutputStream(f);

 PrintStream out = new PrintStream(fout);

 out.println("t Connection-"+connection_index);

 out.flush();

 out.close();
 fout.close();

 }

 catch (Exception e) {System.out.println("Exception thrown in
write_to_FiFO e: "+e);}

}

/***

Method: synchronized copy_kern_ipsec() – copies the file

/kern/ipsec (file containing the current security

associations) to /root/demo/tempipsec (file used to parse

security associations). This method is synchronized to

avoid a deadlock when various threads, created by the demo,

compete for this function.

- Input: none.

- Output: none.

***/

public synchronized void copy_kern_ipsec() {

 try {

 pause(1);

263

 String[] s = new String[3];
 s[0]= new String("/bin/sh");
 s[1] = new String("-c");
 s[2] = new String("cp /kern/ipsec /root/demo/tempipsec");
 rt.exec(s).waitFor();
 }
 catch (Exception e) {
 System.out.println("in demo-support Exception thrown in
copying file e: "+e);
 }
 }

/***

Method: calc_connection()– calculates the number of

existing security associations (SA) by reading

/root/demo/tempipsec and parsing the information to count

existing SAs.

- Input: none.

- Output: none.

***/

public void calc_connection() {

 connection_count=0;

try {
 copy_kern_ipsec();
 File f = new File("/root/demo/tempipsec");

 pause(1);

 if (f.exists()) {

 FileInputStream fis = new FileInputStream(f);

 byte[] buffer = new byte[fis.available()];

 fis.read(buffer);
 String tempString = new String();

 String record = new String(buffer);

 StringTokenizer st = new StringTokenizer(record);
 while (st.hasMoreTokens()) {

 tempString =st.nextToken();

 if (tempString.equals("SPI")) {

264

 // advance connection_counter
 connection_count++;
 }

 }//

 fis.close();
 }

 else {

 System.out.println("/kern/ipsec File does not exist...");
 }
 }
 catch (Exception e) { System.out.println("In Calc_Connections
Exception Thrown: "+e);}

}
}

265

APPENDIX F. SPFK.JAVA

/***

Class: SPFK.java - The goal of this class is to translate

KeyNote’s complex assertion format into an easy to

understand syntax and display it in a JFrame.

***/
 * SPFK.java
 */

import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.*;

public class SPFK {
 private JFrame frame;
 private JTextArea textArea;
 private demo_support_functions dsf;
 private JButton exitButton;
 private JPanel contentPane, toolbar;

/***

Method: SPFK() – this method initializes the JFrame and

reads in the security policy data from a file.

- Input: none.

- Output: none.

***/

 public SPFK() {

 dsf = new demo_support_functions();

 textArea = new JTextArea(15, 40);
 JScrollPane scrollPane = new JScrollPane(textArea);
 contentPane = new JPanel(new BorderLayout());
 toolbar = new JPanel();
 toolbar.setSize(100,75);

frame = new JFrame("Security Policy File / Keynote");
 scrollPane.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLL
BAR_AS_NEEDED);

266

exitButton = new JButton("Exit");
 exitButton.addActionListener(new ActionListener() {
 public void actionPerformed (ActionEvent e) {

 frame.dispose();
 }
 });

 toolbar.add(exitButton);
 contentPane.add(scrollPane, BorderLayout.NORTH);
 contentPane.add(toolbar,BorderLayout.SOUTH);
 frame.getContentPane().add(contentPane);
 frame.pack();
 frame.setVisible(true);

 String bigString = new String();

bigString = dsf.read_file("/etc/isakmpd/keynotednffinal.policy");

 try {
 StringTokenizer policyST = new StringTokenizer(bigString,
"|");
 while (policyST.hasMoreTokens()) {
 String policy = policyST.nextToken();
 showPolicy(policy);
 }
 } catch (NoSuchElementException e) {
 System.out.println("SPFK.Error: " + e);
 }

 }

/***

Method: showPolicy(String policy) – takes input string

(security proposal), parses it into security attributes

and dynamic parameters, and appends to the scrollable text

area.

- Input:

 - String – security proposal to be parsed.

- Output: none.

***/

 private void showPolicy(String policy) throws
NoSuchElementException {

 String app_domain = null;
 String esp_auth_alg = null;
 String esp_enc_alg = null;
 String esp_present = null;
 String ah_auth_alg = null;

267

 String ah_present = null;
 String local_filter_port = null;
 String network_mode = null;
 String remote_filter_port = null;
 String security_level = null;

 StringTokenizer st = new StringTokenizer(policy);
 // note that the string tokenizer cannot use hasMoreTokens()
 // because the token delimiter changes during parsing.

 System.out.println("POlicy passed: "+policy);

 while (st.countTokens() != 1) {
 String key = st.nextToken("\"() &\r\n");
 String equal = st.nextToken("\"");
 String value = st.nextToken("\"");

 if (key.equals("app_domain")) app_domain =
value;
 if (key.equals("esp_auth_alg")) esp_auth_alg =
value;
 else if (key.equals("esp_enc_alg")) esp_enc_alg =
value;
 else if (key.equals("esp_present")) esp_present =
value;
 else if (key.equals("app_domain")) app_domain =
value;
 else if (key.equals("local_filter_port"))
local_filter_port = value;
 else if (key.equals("network_mode")) network_mode =
value;
 else if (key.equals("remote_filter_port"))
remote_filter_port = value;
 else if (key.equals("security_level")) security_level
= value;
 else if (key.equals("ah_present")) ah_present = value;
 else if (key.equals("ah_auth_alg")) ah_auth_alg =
value;

 else System.out.println("SPFK.Unrecognized key: " + key);
 }

 textArea.append("--
\n");
 addText("\n network_mode: ", network_mode);
 addText("\n security_level: ", security_level);
 addText("\n esp_present: ", esp_present);
 addText("\n ah_present: ", ah_present);

 addText("\n esp_enc_alg: ", esp_enc_alg);
 addText("\n esp_auth_alg: ", esp_auth_alg);
 addText("\n ah_auth_alg: ", ah_auth_alg);

 addText("\n local_filter_port: ", local_filter_port);

 addText("\n remote_filter_port: ", remote_filter_port);

268

 textArea.append("\n\n");
 }

/***

Method: addText((String, String) – takes input strings and

appends them to the scrollable text area.

- Input:

 - String – tag.

 - String – tag value.

 - Output: none.

***/

 private void addText(String description, String value) {
 if (value != null) {
 textArea.append(description + value);
 }
 }
}

269

APPENDIX G. DP_CONSOLE.JAVA

/**

Class: dp_console.java - The dynamic parameter console

provides the user with a selection mechanism for network

mode and security level.

**/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import java.lang.*;
import demo_support_functions;

public class dp_console extends JFrame {

 private JFrame actionframe;

 private JButton submit, exit;
 private ButtonGroup networkmode, securitylevel;
 private JRadioButton nm_normal, nm_crisis, nm_impact, sl_high,
sl_medium, sl_low;
 private JPanel panel,p,pdpbuttons,
p2,ptitle,pcomments,pactionbuttons;
 private JLabel sl_title, nm_title, comment, blank1, blank2, blank3;

 String current_network_mode, current_security_level;
 private static Runtime rt;
 private demo_support_functions dsf;

/**

Method: dp_console() constructor – initializes the dynamic

parameter selection interface.

**/

public dp_console() {

 super ("Dynamic Parameter Selection Window");

270

 addWindowListener(
 new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 {
 //if (input != null)
 // closeFile();

 dispose();
 }
 }
);

 setDefaultCloseOperation(DISPOSE_ON_CLOSE);

 p = new JPanel();
 p2 = new JPanel();
 ptitle = new JPanel();
 pcomments = new JPanel();
 pdpbuttons = new JPanel();
 pactionbuttons = new JPanel();
 p.setLayout(new FlowLayout());
 ptitle.setLayout(new GridLayout(1,2));
 pcomments.setLayout(new GridLayout(0,1));
 pdpbuttons.setLayout(new GridLayout(4,2));
 actionframe = new JFrame();
 pactionbuttons.setLayout(new FlowLayout());
 setContentPane(p);

 current_network_mode = null;
 current_security_level = null;

 comment = new JLabel(" ");

 blank1 = new JLabel();
 blank2 = new JLabel();
 blank3 = new JLabel();

 sl_low = new JRadioButton ("Low", false);
 sl_medium = new JRadioButton ("Medium", false);
 sl_high = new JRadioButton ("High", false);

 nm_normal = new JRadioButton ("Normal", false);
 nm_crisis = new JRadioButton ("Crisis", false);
 nm_impact = new JRadioButton ("Impacted", false);

 nm_title = new JLabel("Network Modes Selection");
 sl_title = new JLabel("Security Levels Selection");

 networkmode = new ButtonGroup();
 securitylevel = new ButtonGroup();

 submit = new JButton("Submit");
 exit = new JButton("Exit");

 networkmode.add(nm_normal);

271

 networkmode.add(nm_crisis);
 networkmode.add(nm_impact);

 securitylevel.add(sl_low);
 securitylevel.add(sl_medium);
 securitylevel.add(sl_high);

 NMRadioButtonHandler nm_handler = new NMRadioButtonHandler();
 SLRadioButtonHandler sl_handler = new SLRadioButtonHandler();
 SubmitButtonHandler sb_handler = new SubmitButtonHandler();
 ExitButtonHandler eb_handler = new ExitButtonHandler();

 submit.addActionListener(sb_handler);
 exit.addActionListener(eb_handler);

 nm_normal.addItemListener(nm_handler);
 nm_crisis.addItemListener(nm_handler);
 nm_impact.addItemListener(nm_handler);

 sl_high.addItemListener(sl_handler);
 sl_medium.addItemListener(sl_handler);
 sl_low.addItemListener(sl_handler);

 submit.setVisible(true);
 exit.setVisible(true);

 blank1.setVisible(false);
 blank2.setVisible(false);
 blank3.setVisible(false);

 pdpbuttons.add(nm_title);
 pdpbuttons.add(sl_title);

 pdpbuttons.add(nm_normal);
 pdpbuttons.add(sl_low);
 pdpbuttons.add(nm_crisis);
 pdpbuttons.add(sl_medium);
 pdpbuttons.add(nm_impact);
 pdpbuttons.add(sl_high);
 p.add(pdpbuttons);
 pcomments.add(comment);
 p.add(pcomments);

 pactionbuttons.add(blank1);
 pactionbuttons.add(submit);
 pactionbuttons.add(blank2);
 pactionbuttons.add(exit);
 pactionbuttons.add(blank3);
 p.add(pactionbuttons);

 setSize(350, 150);
 setResizable(true);
 setVisible (false);

 dsf = new demo_support_functions();
 rt = Runtime.getRuntime();
}

272

/**

Method: start_dp_console() – makes the dp_console visible.

 - Input: none.

 - Output: none.

**/

public void start_dp_console() {

 setVisible (true);

}

/**

Method: reset_error_panel() – clears error message panel.

 - Input: none.

 - Output: none.

**/

 public void reset_error_panel() {

 comment.setText("");

 }

/**

Method: set_dynamic_parameters() – stores the value of the

dynamic parameters in a file.

 - Input: none.

 - Output: none.

**/

public void set_dynamic_parameters() {

 delete_file();
 write_dynamic_parameters_file();

}

273

/**

Method: write_dynamic_parameters_file – writes the global

current value of the dynamic parameters to

/usr/src/sbin/isakmpd/dynamic_parameters.

 - Input: none.

 - Output: none.

**/

public void write_dynamic_parameters_file() {

 try {
 File f = new
File("/usr/src/sbin/isakmpd/dynamic_parameters");

 FileOutputStream fos = new FileOutputStream(f);

 PrintStream out = new PrintStream(fos);

 out.println("network_mode = " + current_network_mode+ "\n");
 out.println("security_level = " + current_security_level +
"\n");

 fos.close();
 out.close();

 }

 catch (Exception e) {

 System.out.println("Execption Thrown in Write_DP e: " +e);
 }
 }

/**

Method: print_dynamic_parameters_file() – displays the

current value of network mode and security level to the

system console for trouble shooting purposes.

- Input: none.

- Output: none.

**/

274

public void print_dynamic_parameters_file() {

 try {
 File f = new File("/usr/src/sbin/isakmpd/dynamic_parameters");

 FileInputStream fis = new FileInputStream(f);

 int size_before = fis.available();

 System.out.println("file size: " + size_before);

 byte[] buffer = new byte[fis.available()];

 fis.read(buffer);

 String tempString = new String();

 String record = new String(buffer);

 System.out.println("File : " + record);

 fis.close();

 }
 catch (Exception e) {
 System.out.println("Exception throwm e: "+e);}
}

/**

Method: read_dynamic_parameters_file() – reads in the

value of network mode and security level from file:

/usr/src/sbin/isakmpd/dynamic_parameters and stores them in

the class global variables respectively.

- Input: none.

- Output: none.

**/

public void read_dynamic_parameters_file() {

 System.out.println("Reading dynamic parameters");

 try {

 File f = new File("/usr/src/sbin/isakmpd/dynamic_parameters");

 if (f.exists()) {

275

 System.out.println("dynamic_parameters File exists...");

 FileInputStream fis = new FileInputStream(f);

 byte[] buffer = new byte[fis.available()];

 fis.read(buffer);

 String tempString = new String();

 String record = new String(buffer);

 StringTokenizer st = new StringTokenizer(record);

 while (st.hasMoreTokens()) {

 tempString =st.nextToken();

 if (tempString.equals("network_mode")) {

 // skip equals sign
 st.nextToken();

 current_network_mode = st.nextToken();
 }

 else if (tempString.equals("security_level")) {

 // skip equals sign
 st.nextToken();

 current_security_level = st.nextToken();
 }
 }
 fis.close();
 }

 else {

 System.out.println("dynamic parameters File does not
exist...");
 }
 }
 catch (Exception e) { System.out.println("Exception Thrown reading
dp file: "+e);}
}

/**

Method: delete_file() – deletes existing dynamic parameter file.

 - Input: none.

 - Output: none.

276

**/

public void delete_file() {

 try {

 File f = new
File("/usr/src/sbin/isakmpd/dynamic_parameters");
 f.delete();
 System.out.println("deleting dynamic_parameters file.");
 }
 catch (Exception e) {
 System.out.println("Exception thrown while trying to delete
dynamic_parameters file. exception: "+e);}

 }

/**

Class: SLRadioButtonHandler implements ItemListener –
security level radio button action handler

**/

private class SLRadioButtonHandler implements ItemListener {

 public void itemStateChanged(ItemEvent e)
 {

 reset_error_panel();

 if (current_security_level == null) {

 current_security_level = new String();
 }

 System.out.println("in SL Radio Button item listener");
 if (e.getSource() == sl_high) {

 System.out.println("Security Level High selected.");
 current_security_level = "high";

 }

 else if (e.getSource() == sl_medium) {

 System.out.println("Security Level medium selected.");
 current_security_level= "medium";

 }

 else if (e.getSource() == sl_low) {

277

 System.out.println("Security Level low selected.");
 current_security_level = "low";

 }

 }
}

/**

Class: SubmitButtonHandler implements ActionListener –

submit button action handler.

**/

private class SubmitButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e)
 {
 try {
 reset_error_panel();
 System.out.println("Submit Button selected");

 if
((current_network_mode==null)&&(current_security_level==null)){

 comment.setText("You must select a network mode and
security level");
 }

 else if (current_network_mode == null){

 comment.setText("You must select a network mode");
 }
 else if (current_security_level== null) {

 comment.setText("You must select a security level.");
 }
 else {

 comment.setText("
");

 set_dynamic_parameters();
 print_dynamic_parameters_file();

 if (dsf.daemon_running()) {

 System.out.println("daemon is running.");

 dsf.copy_kern_ipsec();
 dsf.tear_down_connection();

278

 dsf.flush_ipsec();
 dsf.load_spd();
 }
 else { // daemon not running....

 comment.setText("Please start IPsec mechanism from
Qoss menu");
 }

 }
 }
 catch (Exception e2) {

 System.out.println("Exception Thrown in Submit Button
Handler.");
 System.out.println("Exception: "+e2);
 }
 }
}

/**

Class: ExitButtonHandler implements ActionListener – Exit

button action handler.

**/

private class ExitButtonHandler implements ActionListener {

 public void actionPerformed(ActionEvent e)
 {
 reset_error_panel();

 System.out.println("Close Button Selected");

 dispose();

 }

}

/**

Class: NMRadioButtonHandler implements ItemListener –

network mode radio button action handler

**/

private class NMRadioButtonHandler implements ItemListener {

279

 public void itemStateChanged(ItemEvent e)
 {
 reset_error_panel();
 if (current_network_mode == null) {

 current_network_mode = new String();
 }

 if (e.getSource() == nm_normal){

 System.out.println("Network Mode Normal selected.");
 current_network_mode = "normal";

 }

 else if (e.getSource() == nm_crisis){

 System.out.println("Network Mode Crisis selected.");
 current_network_mode = "crisis";

 }

 else if (e.getSource() == nm_impact){

 System.out.println("Network Mode Impacted selected.");
 current_network_mode = "impacted";

 }
 }
}

}

280

THIS PAGE INTENTIONALLY LEFT BLANK

281

APPENDIX H. IPSECINFO.JAVA

/***

Class: ipsecinfo.java - provides a display mechanism for

the Security Association Database (SAD).

**/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

public class ipsecinfo extends Thread {
 File f2 = new File("/root/demo/tempipsec");
 private static Runtime rt;
 private JFrame j;
 private JTextField[] connected_label, unconnected_label ;
 public JTextField[] destination, source, protocol, enc_alg,
enc_auth, auth_alg;
 private JTextField[] title, dest_label, src_label, protocol_label,
enc_alg_label, enc_auth_label, auth_alg_label,status, blank1, blank2;
 private JTextField blank_field;
 //private Container c;
 private ObjectInputStream input;
 private BorderLayout layout;
 private GridLayout gl;
 private JPanel[] jp1, jp2, jp3, jp4, jp5, jp6, jp7, blank;
 private JPanel p;
 private String spi[];
 private JPanel toolbar;
 private JPanel[] pvec;
 private JButton exit;
 private int SA_number =0;
 private JPanel contentPane;
 boolean first_time = true;
 boolean test_catch = false;
 demo_support_functions dsf = new demo_support_functions();
 private boolean kill_thread = false;

/***

Method: ipsecinfo() – class constructor. Initializes JFrame.

**/

public ipsecinfo() {

282

 System.out.println("Test1..");

 rt = Runtime.getRuntime();

 j = new JFrame("OpenBSD IPsec Status Window");

 j.addWindowListener(
 new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 {
 j.dispose();
 kill_thread = true;
 }
 }
);

 toolbar = new JPanel();
 exit = new JButton("Exit");
 exit.addActionListener(new ActionListener() {
 public void actionPerformed (ActionEvent e) {

 j.dispose();
 kill_thread = true;

 }
 }
);
 toolbar.add(exit);
 p = new JPanel();
 p.setLayout(new GridLayout(0, 1));
 JPanel contentPane = new JPanel();
 contentPane.setLayout(new BorderLayout());
 contentPane.add(p, BorderLayout.NORTH);
 contentPane.add(toolbar, BorderLayout.SOUTH);
 j.setContentPane(contentPane);

 System.out.println("Test2..");

 JPanel emptyPanel = new JPanel();

 JTextField emptyText = new JTextField("No current security
association (SA) established");
 emptyText.setEditable(false);
 emptyPanel.add(emptyText);
 p.add(emptyPanel);
 j.pack();
 j.setResizable(true);
 j.setVisible(true);

}

/***

- Method: frame_initialization() – initializes the JFrame

to repaint new SAs.

283

 - Input: none.

 - Output: none.

**/

 public void frame_initialization() {

 int number = 10;
 // JFrame Initiization

 pvec = new JPanel[number];
 jp1 = new JPanel[number];
 jp2 = new JPanel[number];
 jp3 = new JPanel[number];
 jp4 = new JPanel[number];
 jp5 = new JPanel[number];
 jp6 = new JPanel[number];
 jp7 = new JPanel[number];
 blank = new JPanel[number];
 spi = new String[number];

 dest_label = new JTextField[number];
 src_label= new JTextField[number];
 protocol_label = new JTextField[number];
 enc_alg_label = new JTextField[number];
 enc_auth_label = new JTextField[number];
 auth_alg_label = new JTextField[number];
 status = new JTextField[number];
 connected_label= new JTextField[number];
 unconnected_label = new JTextField[number];

 destination = new JTextField[number];
 source = new JTextField[number];
 protocol = new JTextField[number];
 enc_alg = new JTextField[number];
 enc_auth = new JTextField[number];
 auth_alg = new JTextField[number];
 blank1 = new JTextField[number];
 blank2 = new JTextField[number];

 SA_number=0;

 p.removeAll();

 p.setLayout(new GridLayout(0, 1));

 }

/***

Method: prelimanary_test(StringTokenizer st) – compares the

current SA’s in the JFrame with the SA’s from the new file.

284

This is performed to avoid unnecessary painting and

maintain good display resolution.

 - Input:

- StringTokenizer st – contents of the file to be

verified.

 - Output:

- Boolean – True if string contains new SA’s.

False otherwise.

**/

 boolean prelimanary_test(StringTokenizer st) {

 boolean found_match = false;
 boolean repaint = false;
 String tempString = new String();
 StringTokenizer s = st;
 int spi_count =0;

 while (s.hasMoreTokens()) {

 tempString = s.nextToken();
 if (tempString.equals("SPI"))
 spi_count++;
 }
 if (spi_count != SA_number) {
 repaint = true;
 }
 else {

 while (st.hasMoreTokens()) {

 tempString = st.nextToken();
 if (tempString.equals("SPI")) {
 found_match = false;

 // advance token passed assignment
 tempString = st.nextToken();
 tempString = st.nextToken();
 for (int c=0; c<SA_number; c++) {

 if (spi[c].equals(tempString)) {
 found_match = true;

 break;

 }
 }
 // if match not found after searching array...repaint
needed.

285

 if (!found_match) {
 return(true);
 }

 }
 }

 }

 return (repaint);

 }

/***

Method: String wait_for_full_copy(String record)– verifies

that all the required tags exist in the string prior to

parsing. If not, file is reread and the string is verified

until all the tags are found.

 - Input:

- String record – contents of the file to be

verified.

 - Output:

- String – String that contains all required fields.

**/

 public String wait_for_full_copy(String record) {

 StringTokenizer st = new StringTokenizer(record);
 String tempString = new String();
 boolean redo = false;
 boolean keep_looking = true;
 boolean not_found = true;
 boolean check1 = false;
 boolean check2 = false;
 boolean check3 = false;
 FileInputStream in2;
 byte[] buffer;
 int length;

 try {

 while (st.hasMoreTokens() && keep_looking) {

 tempString =st.nextToken();

 if (tempString.equals("SPI")) {

 not_found = true;
 check1 = false;

286

 check2 = false;
 check3 = false;

 while (st.hasMoreTokens() && not_found) {
 tempString = st.nextToken();
 if (tempString.equals("Destination")) {
 check1 = true;
 }
 else if (tempString.equals("Source")){

 check2 = true;
 }

 else if (tempString.equals("xform")) {
 check3 = true;
 }

 if (check1 && check2 && check3)
 not_found = false;
 if (tempString.equals("SPI")){
 not_found = false;
 redo = true;
 }

 }
 }

 if (redo) {
 try {

 long pauseTime = (long) (1*1000);
 Thread.sleep(pauseTime);
 }
 catch (Exception etp) {
 System.out.print("Run Error: " + etp);
 }

 System.out.println("in wait...");
 dsf.copy_kern_ipsec();

 try {

 in2 = new FileInputStream(f2);
 buffer = new byte[in2.available()];
 in2.read(buffer,0,buffer.length);
 record = new String(buffer);
 st = new StringTokenizer(record);

 in2.close();

 }

 catch (Exception e) {
 System.out.print("in ipsecinfo wait for full copy Run
Error: " + e);

287

 }
 redo = false;

 }

 }

 }
 catch (Exception e) {
 System.out.print("Run Error: " + e);

 }
 return (record);
 }

/***

Method: parse(String record) – parses the string into SA’s

to be displayed on the JFrame.

- Input:

- String record – contains the file to be parsed.

 - Output: none.

**/

public void parse(String record)
{
 String tempString = new String();

 boolean esp = false;
 boolean ah = false;
 boolean prelim_test = false;
 int count = -1;
 int file_contents_check = 0;

 try {

 boolean no_SA_flag = true;

 record = wait_for_full_copy(record);
 StringTokenizer st = new StringTokenizer(record);
 StringTokenizer temp_st = new StringTokenizer(record);

 // if prelimanary test passed.... continue parsing...

 if (prelimanary_test(temp_st)) {

 frame_initialization();
 test_catch= true;

288

 while (st.hasMoreTokens()) {

 tempString =st.nextToken();

 if (tempString.equals("SPI")) {
 //skip =
 st.nextToken();
 no_SA_flag=false;

 if (count != -1) {

 //setup blank line
 blank[count] = new JPanel(new GridLayout(1,2));
 blank1[count] = new JTextField(" ");
 blank2[count] = new JTextField(" ");
 blank1[count].setEditable(false);
 blank2[count].setEditable(false);
 blank[count].add(blank1[count]);
 blank[count].add(blank2[count]);
 blank[count].setVisible(true);

 p.add(blank[count]);
 }

 count = count + 1;

 spi[count]= (String)st.nextToken();

 esp = false;
 ah = false;
 }

 else if (tempString.equals("Destination")) {

 st.nextToken();

 // setup Destination panel
 jp1[count] = new JPanel(new GridLayout(1,2));

 dest_label[count] = new JTextField ("Destination: ");
 destination[count] = new JTextField();
 dest_label[count].setEditable(false);
 destination[count].setEditable(false);
 jp1[count].add(dest_label[count]);
 jp1[count].add(destination[count]);
 destination[count].setText((String) st.nextToken());
 jp1[count].setVisible(true);
 p.add(jp1[count]);

 }

 else if (tempString.equals("Source")) {

 st.nextToken();

 // setup source panel

289

 jp2[count] = new JPanel(new GridLayout(1,2));
 src_label[count]= new JTextField ("Source: ");
 source[count] = new JTextField();
 src_label[count].setEditable(false);
 source[count].setEditable(false);
 jp2[count].add(src_label[count]);
 jp2[count].add(source[count]);

 source[count].setText((String) st.nextToken());
 jp2[count].setVisible(true);
 p.add(jp2[count]);

 //setup status panel
 jp3[count] = new JPanel(new GridLayout(1,2));
 status[count] = new JTextField ("Connection Status:
");
 connected_label[count] = new JTextField ("IPsec
connection established");
 status[count].setEditable(false);
 connected_label[count].setEditable(false);
 jp3[count].add(status[count]);
 jp3[count].add(connected_label[count]);
 jp3[count].setVisible(true);
 p.add(jp3[count]);

 }

 else if (tempString.equals("xform")) {
 st.nextToken();
 tempString =(((String) st.nextToken()) + " " +
((String) st.nextToken()));

 //setup Protocolpanel
 jp4[count] = new JPanel(new GridLayout(1,2));
 protocol_label[count] = new JTextField ("Protocol:
");
 protocol[count] = new JTextField();
 protocol_label[count].setEditable(false);
 protocol[count].setEditable(false);
 jp4[count].add(protocol_label[count]);
 jp4[count].add(protocol[count]);

 protocol[count].setText(tempString);
 jp4[count].setVisible(true);
 p.add(jp4[count]);

 if (tempString.equals("<IPsec ESP>")) {
 esp = true;
 }
 else { System.out.println("Protocol: "+tempString);}
 if (tempString.equals("<IPsec AH>")) {
 System.out.println("IPsec AH....");
 ah = true;
 }

 }

290

 else if (tempString.equals("Encryption")) {

 st.nextToken();
 tempString = st.nextToken();

//setup encryption algo panel
 jp5[count] = new JPanel(new GridLayout(1,2));
 enc_alg_label[count] = new JTextField ("Encryption
Algorithm: ");
 enc_alg[count] = new JTextField();
 enc_alg_label[count].setEditable(false);
 enc_alg[count].setEditable(false);
 jp5[count].add(enc_alg_label[count]);
 jp5[count].add(enc_alg[count]);

 enc_alg[count].setText(tempString);
 jp5[count].setVisible(true);
 p.add(jp5[count]);

 }

 else if (tempString.equals("Authentication")) {

 st.nextToken();
 tempString = st.nextToken();

 if (esp) {
 //setup esp authentication panel
 jp6[count] = new JPanel(new GridLayout(1,2));
 enc_auth_label[count] = new JTextField
("Encryption Authentication Algorithm: ");
 enc_auth[count] = new JTextField();
 enc_auth_label[count].setEditable(false);
 enc_auth[count].setEditable(false);
 jp6[count].add(enc_auth_label[count]);
 jp6[count].add(enc_auth[count]);

 enc_auth[count].setText(tempString);
 jp6[count].setVisible(true);
 p.add(jp6[count]);
 //esp = false;

 }
 else if (ah) {

 //setup ah authentication panel
 jp7[count] = new JPanel(new GridLayout(1,2));
 auth_alg_label[count] = new JTextField
("Authentication Algorithm: ");
 auth_alg[count] = new JTextField();
 auth_alg_label[count].setEditable(false);
 auth_alg[count].setEditable(false);
 jp7[count].add(auth_alg_label[count]);
 jp7[count].add(auth_alg[count]);
 auth_alg[count].setText(tempString);
 jp7[count].setVisible(true);
 p.add(jp7[count]);

291

 //ah = false;

 }

 }

 }

 //Check for no SA's

 if (no_SA_flag) {
 JPanel emptyPanel = new JPanel();
 JTextField emptyText = new JTextField("No current security
association (SA) established");
 emptyText.setEditable(false);
 emptyPanel.add(emptyText);
 p.add(emptyPanel);
 j.pack();
 }
 else {
 // increment by 1 from array adjustment
 count = count +1;
 // setup JFrame size
 if (count < 2) j.setSize(300, 300);
 else if (count < 3) j.setSize(400,300);
 else if (count < 4) j.setSize(400,400);
 else if (count < 5) j.setSize(400,500);
 else j.setSize(600,600);
 }

 test_catch = true;
 SA_number = count;

 }
 else {
 System.out.println("Prelimanary Test failed...skipping
parsing..");}

 }

 catch (Exception e) {System.out.println("Erooring in parsing: "
+e);}

}

}

/***

- Method: run() – continually checks files date-time-stamp and if file is

updated copies file and reads data into a string.

292

 - Input: none.

 - Output: none.

**/

public void run()
{

 int current_file_size=0;
 int new_file_size= 0;
 long old_date_time_stamp = 0;
 long new_date_time_stamp = 0;
 int file_size=0;

 FileInputStream in1,in2;
 byte[] buffer;
 byte[] buffertemp;
 String record;
 File f1; //,f2;
 try {
 f1 = new File("/kern/ipsec");
 }
 catch (Exception e) { System.out.println("Error: "+e);}

 while (!kill_thread) {

 try {

 long pauseTime = (long) (1*1000);
 Thread.sleep(pauseTime);
 }
 catch (Exception etp) {
 System.out.print("Run Error: " + etp);
 }

 try {

 if (f1.exists()) {

 in1 = new FileInputStream(f1);
 new_file_size = in1.available();

 new_date_time_stamp = f1.lastModified();

 if (new_date_time_stamp != old_date_time_stamp) {

 in2 = new FileInputStream(f2);
 //copy file
 dsf.copy_kern_ipsec();
 file_size = in2.available();

 buffer = new byte[in2.available()];
 buffertemp = new byte[in2.available()];

 in2.read(buffer,0,buffer.length);

293

 old_date_time_stamp = new_date_time_stamp;
 record = new String(buffer);
 in2.close();
 parse(record);
 }
 in1.close();

 }

 }

 catch (Exception e) {
 System.out.print("Run Error: " + e);

 }

 }
}
}

294

THIS PAGE INTENTIONALLY LEFT BLANK

295

APPENDIX I. TCPDUMP.JAVA

/***

 Class: tcpdump.java - provide the user with graphical

console display of tcpdump.

**/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

public class tcpdump extends Thread {

 private static Runtime rt;
 private JFrame j;
 private JScrollPane jsp;
 private JLabel jl2;
 private JTextArea jta;
 private JPanel toolbar;
 private JPanel contentPane;
 private ObjectInputStream input;
 private BorderLayout layout;
 private GridLayout gl;
 private JButton exit;
 private demo_support_functions dsf;
 InputStream in;
 Process p;
 boolean stop = false;

/***

Method: tcpdump() – constructor for the class.

**/

public tcpdump() {
 dsf = new demo_support_functions();

 System.out.println("in constructo");

 rt = Runtime.getRuntime();

 jl2 = new JLabel();
 jta = new JTextArea(10,70);

296

 jta.setLineWrap(true);
 jta.setRows(10);
 contentPane = new JPanel();
 toolbar = new JPanel();

 exit = new JButton("Exit");
 exit.addActionListener(new ActionListener() {
 public void actionPerformed (ActionEvent e) {
 stop = true;
 dsf.stop_tcpdump();
 j.dispose();
 }
 }
);

 j = new JFrame("OpenBSD IPsec TCPDUMP View Window");

 j.addWindowListener(
 new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 {
 stop = true;
 dsf.stop_tcpdump();
 j.dispose();
 }
 }
);

 toolbar.add(exit);
 jsp = new JScrollPane(jta);
 jsp.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLBAR_AS_
NEEDED);
 contentPane.setLayout(new BorderLayout());
 //contentPane.setPreferredSize(new Dimension(600,250));
 contentPane.add(jsp, BorderLayout.NORTH);
 contentPane.add(toolbar, BorderLayout.SOUTH);
 toolbar.setSize(600,50);
 j.setContentPane(contentPane);
 j.pack();
 j.setVisible(true);
}

/***

Method: start_tcpdump() - executes tcpdump and creates a

pipe to capture packet information.

- Input: none.

- Output: none.

**/

public void start_tcpdump() {

297

 try {
 System.out.println("in try for rt...");
 String[] s = new String[3];
 s[0]= new String("/bin/csh");
 s[1] = new String("-c");
 s[2] = new String("tcpdump -N -v");
 p=rt.exec(s);
 in = p.getInputStream();
 System.out.println("performed rt.");
 }
 catch (Exception e) {
 System.out.println("Exception thrown in tcpdump"+e);

 }
 }

/***

Method: repaint_frame() – this method generates the output

from the piped stream and displays to the scrollable text

area.

 - Input: none.

- Output: none.

**/

 public void repaint_frame() {

 String line;

 try {
 System.out.println("in repaint_frame");
 BufferedReader br = new BufferedReader(new
InputStreamReader(in));

 jta.setText("TCPDUMP Output....");

 while (stop == false) {
 try {

 line = br.readLine();

 StringTokenizer token = new StringTokenizer(line, ">
:.\n\r");
 boolean found = false;
 while (token.hasMoreTokens()) {
 String tok = token.nextToken();
 if (tok.equals("athina") || tok.equals("mshn3")) {
 found = true;
 }
 }

298

 if (found) {
 System.out.println("here: "+line);
 jta.append("..ok..\n");
 jta.append(line);
 }
 }
 catch (Exception e2) {
 System.out.println("Exception thrown try to buffer read
for tcpdump: "+e2);}

 }
 }
 catch (Exception e) {
 System.out.println("Error reading tcpdump file: "+e);
 }

 }

/***

Method: run() – run method for the thread.

**/

public void run()
{
 start_tcpdump();
 repaint_frame();

}

}

299

APPENDIX J. ISAKMPD.CONF FILE

The following is the isakmpd.conf file used in the testing phase.
Note: only fields required after modifications to IPsec/IKE/ISAKMPD mechanism were
those related to network connections (IP Addresses and Net masks), ISAKMP Phase I
and certificates. All ISAKMP Phase II was derived from isakmpd.policy/KeyNote.

A configuration sample for the isakmpd ISAKMP/Oakley (aka IKE)
daemon.

[General]
Listen-on= 131.120.8.91
Shared-SADB= Defined
Retransmits= 5
Exchange-max-time= 120

[Phase 1]
#set-up to work specifically with athina with new configuration style
131.120.8.95= Peer-131.120.8.95/131.120.8.91

#set-up to work specifically with athina with new configuration style
[Peer-131.120.8.95/131.120.8.91]
Phase= 1
Address= 131.120.8.95
Local-address= 131.120.8.91
Transport= udp
Configuration= Default-main-mode
Authentication= mekmitasdigoat

#Must stay - by CDA
[Default-main-mode]
DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA

Certificates stored in PEM format
[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
#Accept-self-signed= defined
Private-key= /etc/isakmpd/private/MSHN3.key

300

THIS PAGE INTENTIONALLY LEFT BLANK

301

APPENDIX K. ISAKMPD.POLICY FILE

The following is the isakmpd.policy file used in the testing phase.
Note: Refer to Appendix M Table M.1 for summary of security proposals.

KeyNote-Version: 2
Comment: Policy file for Network Modes and Security Levels
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat"
Conditions: ((app_domain == "IPsec policy") &&
 (
 ((network_mode == "normal") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||
(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "cast") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||
(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")

302

)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||
(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "impacted") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||
(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||
(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||

303

 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||
(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "crisis") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||
(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||
(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "aes") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||

304

(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "default") &&
 (security_level == "default") &&
 (
 ((esp_present == "yes") &&
 ((local_filter_port == "23") ||
(remote_filter_port == "23")) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 ((local_filter_port == "79") ||
(remote_filter_port == "79")) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
)
)
 -> "true";

305

APPENDIX L. KEYNOTEDNFFINAL.POLICY FILE

The following file is the keynotednffinal.policy file used in the testing phase. The file is
generated by the DNF module which converts the condition assertion found
inisakmpd.policy into a DNF form.

Note: Refer to Appendix M Table M.1 for summary of security proposals.

((((((((((((((local_filter_port == "23") && (esp_auth_alg == "hmac-
sha")) && (esp_enc_alg == "3des")) && (esp_present == "yes")) &&
(security_level == "high")) && (network_mode == "normal")) &&
(app_domain == "IPsec policy")) || (((((((remote_filter_port == "23")
&& (esp_auth_alg == "hmac-sha")) && (esp_enc_alg == "3des")) &&
(esp_present == "yes")) && (security_level == "high")) && (network_mode
== "normal")) && (app_domain == "IPsec policy"))) ||
(((((((local_filter_port == "79") && (ah_auth_alg == "hmac-sha")) &&
(ah_present == "yes")) && (security_level == "high")) && (network_mode
== "normal")) && (app_domain == "IPsec policy")) ||
((((((remote_filter_port == "79") && (ah_auth_alg == "hmac-sha")) &&
(ah_present == "yes")) && (security_level == "high")) && (network_mode
== "normal")) && (app_domain == "IPsec policy")))) ||
(((((((((local_filter_port == "23") && (esp_auth_alg == "hmac-sha")) &&
(esp_enc_alg == "cast")) && (esp_present == "yes")) && (security_level
== "medium")) && (network_mode == "normal")) && (app_domain == "IPsec
policy")) || (((((((remote_filter_port == "23") && (esp_auth_alg ==
"hmac-sha")) && (esp_enc_alg == "cast")) && (esp_present == "yes")) &&
(security_level == "medium")) && (network_mode == "normal")) &&
(app_domain == "IPsec policy"))) || (((((((local_filter_port == "79")
&& (ah_auth_alg == "hmac-md5")) && (ah_present == "yes")) &&
(security_level == "medium")) && (network_mode == "normal")) &&
(app_domain == "IPsec policy")) || ((((((remote_filter_port == "79") &&
(ah_auth_alg == "hmac-md5")) && (ah_present == "yes")) &&
(security_level == "medium")) && (network_mode == "normal")) &&
(app_domain == "IPsec policy"))))) || (((((((((local_filter_port ==
"23") && (esp_auth_alg == "hmac-md5")) && (esp_enc_alg == "des")) &&
(esp_present == "yes")) && (security_level == "low")) && (network_mode
== "normal")) && (app_domain == "IPsec policy")) ||
(((((((remote_filter_port == "23") && (esp_auth_alg == "hmac-md5")) &&
(esp_enc_alg == "des")) && (esp_present == "yes")) && (security_level
== "low")) && (network_mode == "normal")) && (app_domain == "IPsec
policy"))) || (((((((local_filter_port == "79") && (ah_auth_alg ==
"hmac-md5")) && (ah_present == "yes")) && (security_level == "low")) &&
(network_mode == "normal")) && (app_domain == "IPsec policy")) ||
((((((remote_filter_port == "79") && (ah_auth_alg == "hmac-md5")) &&
(ah_present == "yes")) && (security_level == "low")) && (network_mode
== "normal")) && (app_domain == "IPsec policy"))))) ||
(((((((local_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "des")) && (esp_auth_alg == "hmac-md5")) &&
((network_mode == "default") && (security_level == "default"))) ||
(((((remote_filter_port == "23") && (esp_present == "yes")) &&
(esp_enc_alg == "des")) && (esp_auth_alg == "hmac-md5")) &&
((network_mode == "default") && (security_level == "default")))) ||

306

(((((local_filter_port == "79") && (ah_present == "yes")) &&
(ah_auth_alg == "hmac-md5")) && ((network_mode == "default") &&
(security_level == "default"))) || ((((remote_filter_port == "79") &&
(ah_present == "yes")) && (ah_auth_alg == "hmac-md5")) &&
((network_mode == "default") && (security_level == "default")))))) ||
((((((((((local_filter_port == "23") && (esp_auth_alg == "hmac-md5"))
&& (esp_enc_alg == "blowfish")) && (esp_present == "yes")) &&
(security_level == "high")) && (network_mode == "impacted")) ||
((((((remote_filter_port == "23") && (esp_auth_alg == "hmac-md5")) &&
(esp_enc_alg == "blowfish")) && (esp_present == "yes")) &&
(security_level == "high")) && (network_mode == "impacted"))) ||
((((((local_filter_port == "79") && (ah_auth_alg == "hmac-md5")) &&
(ah_present == "yes")) && (security_level == "high")) && (network_mode
== "impacted")) || (((((remote_filter_port == "79") && (ah_auth_alg ==
"hmac-md5")) && (ah_present == "yes")) && (security_level == "high"))
&& (network_mode == "impacted")))) || ((((((((local_filter_port ==
"23") && (esp_auth_alg == "hmac-md5")) && (esp_enc_alg == "cast")) &&
(esp_present == "yes")) && (security_level == "medium")) &&
(network_mode == "impacted")) || ((((((remote_filter_port == "23") &&
(esp_auth_alg == "hmac-md5")) && (esp_enc_alg == "cast")) &&
(esp_present == "yes")) && (security_level == "medium")) &&
(network_mode == "impacted"))) || ((((((local_filter_port == "79") &&
(ah_auth_alg == "hmac-ripemd")) && (ah_present == "yes")) &&
(security_level == "medium")) && (network_mode == "impacted")) ||
(((((remote_filter_port == "79") && (ah_auth_alg == "hmac-ripemd")) &&
(ah_present == "yes")) && (security_level == "medium")) &&
(network_mode == "impacted"))))) || ((((((((local_filter_port == "23")
&& (esp_auth_alg == "hmac-md5")) && (esp_enc_alg == "des")) &&
(esp_present == "yes")) && (security_level == "low")) && (network_mode
== "impacted")) || ((((((remote_filter_port == "23") && (esp_auth_alg
== "hmac-md5")) && (esp_enc_alg == "des")) && (esp_present == "yes"))
&& (security_level == "low")) && (network_mode == "impacted"))) ||
((((((local_filter_port == "79") && (ah_auth_alg == "hmac-ripemd")) &&
(ah_present == "yes")) && (security_level == "low")) && (network_mode
== "impacted")) || (((((remote_filter_port == "79") && (ah_auth_alg ==
"hmac-ripemd")) && (ah_present == "yes")) && (security_level == "low"))
&& (network_mode == "impacted")))))) || ((((((((((local_filter_port ==
"23") && (esp_auth_alg == "hmac-sha")) && (esp_enc_alg == "aes")) &&
(esp_present == "yes")) && (security_level == "high")) && (network_mode
== "crisis")) || ((((((remote_filter_port == "23") && (esp_auth_alg ==
"hmac-sha")) && (esp_enc_alg == "aes")) && (esp_present == "yes")) &&
(security_level == "high")) && (network_mode == "crisis"))) ||
((((((local_filter_port == "79") && (ah_auth_alg == "hmac-sha")) &&
(ah_present == "yes")) && (security_level == "high")) && (network_mode
== "crisis")) || (((((remote_filter_port == "79") && (ah_auth_alg ==
"hmac-sha")) && (ah_present == "yes")) && (security_level == "high"))
&& (network_mode == "crisis")))) || ((((((((local_filter_port == "23")
&& (esp_auth_alg == "hmac-sha")) && (esp_enc_alg == "3des")) &&
(esp_present == "yes")) && (security_level == "medium")) &&
(network_mode == "crisis")) || ((((((remote_filter_port == "23") &&
(esp_auth_alg == "hmac-sha")) && (esp_enc_alg == "3des")) &&
(esp_present == "yes")) && (security_level == "medium")) &&
(network_mode == "crisis"))) || ((((((local_filter_port == "79") &&
(ah_auth_alg == "hmac-sha")) && (ah_present == "yes")) &&
(security_level == "medium")) && (network_mode == "crisis")) ||
(((((remote_filter_port == "79") && (ah_auth_alg == "hmac-sha")) &&
(ah_present == "yes")) && (security_level == "medium")) &&

307

(network_mode == "crisis"))))) || ((((((((local_filter_port == "23") &&
(esp_auth_alg == "hmac-sha")) && (esp_enc_alg == "3des")) &&
(esp_present == "yes")) && (security_level == "low")) && (network_mode
== "crisis")) || ((((((remote_filter_port == "23") && (esp_auth_alg ==
"hmac-sha")) && (esp_enc_alg == "3des")) && (esp_present == "yes")) &&
(security_level == "low")) && (network_mode == "crisis"))) ||
((((((local_filter_port == "79") && (ah_auth_alg == "hmac-ripemd")) &&
(ah_present == "yes")) && (security_level == "low")) && (network_mode
== "crisis")) || (((((remote_filter_port == "79") && (ah_auth_alg ==
"hmac-ripemd")) && (ah_present == "yes")) && (security_level == "low"))
&& (network_mode == "crisis"))))))

308

THIS PAGE INTENTIONALLY LEFT BLANK

309

APPENDIX M. SECURITY PROPOSAL SUMMARY

The following table is a summary of the security proposals found in

isakmpd.policy (Appendix K) and keynotednf.policy (Appendix L).

S E C U R I T Y L E V E L

Low Medium High

 Applications Encryption/Authentication Algorithm
N Normal Telnet DES MD5 CAST SHA 3DES SHA

E M Finger MD5 MD5 SHA

T O Crisis Telnet 3DES SHA 3DES SHA AES SHA

W D Finger SHA SHA SHA

O E Impact Telnet DES MD5 DES MD5 3DES MD5

R Finger MD5 MD5 MD5

K

Telnet DES MD5 Default
Setting Finger MD5

Table M.1. Security Proposal Summary

310

THIS PAGE INTENTIONALLY LEFT BLANK

311

LIST OF REFERENCES

Angelos D. Keromytis, John Ioannidis, and Jonathan M. Smith, Implementing IPsec, In
Proceedings of the IEEE Global Internet (GlobeCom) 1997, pp. 1948 - 1952. November
1997, Phoenix, AZ.

Aurrecoechohea, C., Campbell, A., and Hauw, L. A., A Survey of Quality of Service
Architectures, Multimedia Systems Journal, Special Issue on QoS Architectures, 1996.

Blaze Matt, Feigenbaum, Joan, Ioannidis, John, and Keromytis, Angelos D, The KeyNote
Trust Management System Version 2, (RFC 2704, Network Working Group, September
1999, http://www.ietf.org/rfc/rfc2404.txt

Blaze, Matt, Feigenbaum, Joan, and Keromytis, Angelos D., KeyNote: Trust
Management for Public-Key Infrastructures, In Proceedings of the 1998 Security
Protocols International Workshop, Springer LNCS vol. 1550, pp. 59 - 63. April 1998,
Cambridge, England. Also AT&T Technical Report 98.11.1.

Blaze, Matt, Ioannidis, John and Keromytis, Angelos D. Trust Management and Network
Security Protocols, In Proceedings of the 1999 Security Protocols International
Workshop, April 1999, Cambridge, England.

Blaze, Matt, Ioannidis, John and Keromytis, Angelos D., Trust Management for IPsec, In
Proceedings of the Internet Society Symposium on Network and Distributed Systems
Security (SNDSS) 2001, pp. 139 - 151. February 2001, San Diego, CA.

Chatterjee, S., Sabata, B., Sydir, J. ERDOS Qos Architecture, SRI Technical Report
ITAD-1667-TR-98-075, Menlo Park, CA, May 1998.

Doraswamy, Naganand and Harkins, Dan, IPsec The New Security Standard for the
Internet, Intranets, and the Virtual Private Networks, Prentice-Hall, Inc., 1999.

Harkins, D. and Carrel, D., The Internet Key Exchange (IKE), RFC 2409, Network
Working Group, November 1998, http://www.ietf.org/rfc/rfc2409.txt

Irvine, C.E. and Levin, T., Quality of Security Service, Proceedings of the New Security
Paradigms Workshop, Cork, Ireland, September 2000

ISAKMPD.CONF(5), OpenBSD Programmer’s Manual, http://www.openbsd.org/cgi-
bin/man.cgi, October 1998.

ISAKMPD.POLICY(5), OpenBSD Programmer’s Manual, http://www.openbsd.org/cgi-
bin/man.cgi, October 1998.

312

Java 2 Standard Edition, V1.2.2 API Specification,
http://java.sun.com/products/jdk/1.2/docs/api/, Sun Microsystems, Inc., 1999.

Kent, S and Atkinson, R, Security Architecture for the Internet Protocol, RFC2401,
Network Working Group, November 1998, http://www.ietf.org/rfc/rfc2401.txt

KEYNOTE(5), OpenBSD Programmer’s Manual, http://www.openbsd.org/cgi-
bin/man.cgi, October 1999.

Leiseboer, John, IPSEC – Security Architecture for IP, Part 2: Security Association,
http://www.chipcenter.com/eexpert/jleiseboer/jleiseboer036.html, ChipCenter: The Web's
Definitive Electronics Resource, Modified 12/05/2001.

(LK(kn_add_action()), OpenBSD Programmer’s Manual Pages, OpenBSD Operating
System Version 2.8, 2000.

LK(kn_do_query()), OpenBSD Programmer’s Manual Pages, OpenBSD Operating
System Version 2.8, 2000.

Maughan, D., Schertler, M., Schneider M., Turner J., Internet Security Association and
Key Management Protocol (ISAKMP), RFC 2408, Network Working Group, November
1998, http://www.ietf.org/rfc/rfc2409.txt

Naval Postgraduate School, NPS-CS-02-001, IPsec Modulation for the Quality of
Security Service, Spyropoulou, Evdoxia., Agar, Christopher D., Levin, Timothy, and
Irvine, Cynthia, January 2002.

Naval Postgraduate School, NPS-CS-02-002, KeyNote Policy Files and Conversion to
Disjunctive Normal Form for Use in IPsec, Spyropoulou, Evdoxia., Levin, Timothy, and
Irvine, Cynthia, January 2002.

Naval Postgraduate School, NPS-CS-02-003, Demonstration of Quality of Security
Service Awareness for IPsec, Spyropoulou, Evdoxia., Levin, Timothy, and Irvine,
Cynthia, January 2002.

Savolainen, Sampo, Internet Key Exchange (IKE), Department of Electrical and
Communications Engineering, Helsinki University of Technology, 1999.

Simpson, W A, Cipher Block Chaining (CBC), Internet Draft, Network Working Group,
July 19998, http://www.ietf.org/proceedings/99mar/I-D/draft-simpson-cbc-01.txt

Spyropoulou, E., Levin, T., and Irvine, C.E., Calculating Costs for Quality of Security
Service, Proceedings of the 16th Annual Computer Security Applications Conference,
New Orleans, LA, December 2000.

Thayer, R., Doraswamy,N., and Glenn, R., IP Security Document Roadmap, RFC 2411,
Network Working Group, November 1998, http://www.ietf.org/rfc/rfc2411.txt

313

Using IPsec (Internet Security Protocol), http://www.openbsd.org/faq/faq13.html,
October 2001.

314

THIS PAGE INTENTIONALLY LEFT BLANK

315

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Carl Siel

 Space and Naval Warfare Systems Command, PMW 161
 San Diego, California

4. Commander, Naval Security Group Command

 Naval Security Group Headquarters
 Fort Meade, Maryland

5. Ms. Deborah M. Cooper

 Deborah M. Cooper Company
 Arlington, Virginia

6. Ms. Louise Davidson
 N643, Presidential Tower 1
 Arlington, Virginia

7. Mr. William Dawson

 Community CIO Office
Washington DC

8. Ms. Deborah Phillips, Community Management Staff
 Community CIO Office

 Washington DC

9. Capt. James Newman

 N64
 Presidential Tower 1
 Arlington, Virginia

10. Major Dan Morris
 HQMC, C4IA Branch
 TO: Navy Annex
 Washington, DC

316

11. Mr. Richard Hale
 Defense Information Systems Agency, Suite 400
 Falls Church, Virginia

12. Ms. Barbara Flemming
 Defense Information Systems Agency, Suite 400
 Falls Church, Virginia

13. Mr. Michael Green, Director
 Public Key Infrastructure Program Management Office
 National Security Agency
 Ft. Meade, Maryland

14. Dr. Cynthia E. Irvine
 Computer Science Department, Code CS/IC

Naval Postgraduate School
Monterey, California

15. Mr. Timothy Levin
 Computer Science Department, Code CS
 Naval Postgraduate School
 Monterey, California

